体验下Meta-Llama-3.1-8B

在网上下到了Meta-Llama-3.1-8B-Instruct-Q5_K_M.gguf;

将lm studio 更新到0.2.28

试了下,体验下最新的科技。

### 解决 Hugging Face 上受限模型存储库访问问题 为了成功访问 Hugging Face 的受限制(gated)或授权(authorized)模型存储库,例如 Meta Llama 系列中的某些模型,需要遵循特定的流程来完成身份验证和权限授予。以下是详细的解决方案: #### 权限申请与账户设置 用户需先登录到自己的 Hugging Face 账户并请求访问目标模型。这通常涉及填写一份表单以说明使用目的以及同意遵守相关条款和条件[^1]。 #### API 访问令牌配置 对于程序化访问这些资源,则可能需要用到个人访问令牌 (access token),该令牌可以通过以下方式获取: - 登录至 [Hugging Face](https://huggingface.co/) 官网; - 进入 “Settings -> Access Tokens” 页面生成一个新的 Token[^2]。 随后,在本地环境中设置此环境变量以便于后续操作顺利进行: ```bash export HF_AUTH_TOKEN="your_hf_access_token_here" ``` #### 使用 Python SDK 加载模型实例 当一切准备就绪之后,可以利用 `transformers` 库加载所需的预训练模型。下面给出了一段示范代码展示如何通过认证机制下载并初始化一个被保护起来的大规模语言模型: ```python from transformers import AutoTokenizer, AutoModelForCausalLM import os tokenizer = AutoTokenizer.from_pretrained( "meta-llama/Llama-2", use_auth_token=os.getenv('HF_AUTH_TOKEN') ) model = AutoModelForCausalLM.from_pretrained( "meta-llama/Llama-2", use_auth_token=os.getenv('HF_AUTH_TOKEN'), trust_remote_code=True ) ``` 以上过程涵盖了从基本的身份确认到最后实际部署期间所需采取的各项措施[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值