- 博客(68)
- 收藏
- 关注
原创 [论文阅读]PMG:Personalized Multimodal Generation with Large Language Models
《PMG:基于大语言模型的个性化多模态生成》提出了一种创新框架,通过整合大语言模型的多模态理解能力实现个性化内容生成。该系统能够根据用户画像、历史行为和实时交互动态调整生成策略,支持文本、图像、音频等多元模态输出。实验表明PMG在个性化匹配度和生成质量上显著优于传统方法,为智能客服、教育辅助等场景提供了更自然的交互体验。该研究推动了多模态AI向个性化服务方向发展。
2025-06-29 17:10:42
206
原创 [论文阅读]MISSRec: Pre-training and Transferring Multi-modal Interest-aware Sequence Representation for
本文提出MISSRec模型,通过多模态预训练和兴趣感知序列表示来提高推荐效果。该模型整合视觉、文本等多模态信息,捕捉用户动态兴趣偏好,并通过两阶段迁移学习框架(预训练+微调)实现跨领域知识迁移。实验表明,MISSRec在多个推荐任务上优于现有方法,尤其在冷启动场景表现突出。该方法为融合多模态数据和建模用户兴趣序列提供了新思路。
2025-06-29 17:08:41
164
原创 [论文阅读]A unified deep framework for peptide–major histocompatibility complex–T cell receptor binding
UniPMT提出统一深度学习框架预测肽-MHC-TCR结合。采用交叉熵函数优化肽-MHC(P-M)和肽-TCR(P-T)相互作用预测。
2025-06-26 20:45:00
263
原创 如何理解文本 - 图像对齐模型 CLIP
CLIP是OpenAI开发的跨模态模型,通过对比学习将文本和图像编码到同一语义空间,实现图文对齐。它能直接计算任意图文组合的相似度,无需针对特定任务训练,突破了传统模型需要大量标注数据的限制。CLIP的工作原理包括:编码文本和图像为数字向量,监督训练学习相似度,最终通过向量匹配实现跨模态理解,体现了通用AI的潜力。
2025-06-13 10:30:55
369
原创 [多智能体强化学习-学习笔记]
多智能体强化学习(MARL)涉及智能体之间的多种关系,包括合作、竞争、合作竞争混合以及利己主义。例如,汽车制造厂的机械臂代表合作,两个下象棋的选手代表竞争,两个足球队比赛代表合作竞争混合,股票交易则代表利己主义。这些关系可以通过不同的奖励机制来表示,如团队全局目标、竞争奖励、合作竞争奖励和局部最优奖励。MARL的架构如MADDPG采用中心化训练和去中心化执行。然而,MARL面临环境状态与联合动作相关、局部观测信息获取困难以及易陷入纳什均衡局部最优等挑战。博弈论为理解这些动态提供了理论基础。
2025-05-17 13:38:34
180
原创 第30次CCF计算机软件能力认证(持续跟新+个人题解+完整代码)
现已按上述方式整理好了每步棋后的局面,试统计每个局面分别是第几次出现。的字符数组来表示,其中每一位对应棋盘上的一个格子。输入矩阵、向量中的元素均为整数,且绝对值均不超过。输入矩阵、向量中的元素均为整数,且绝对值均不超过。表示,其中大写字母对应白方、小写字母对应黑方。两个字符数组的每一位均相同则说明对应同一局面。行,每行一个整数,表示该局面是第几次出现。六种棋子王、后、车、象、马、兵分别用字母。输入的第一行包含空格分隔的两个正整数。,试计算顿顿按简化的算式计算的结果。步后的局面与上图相对应。
2024-11-21 20:18:28
1015
1
原创 第31次CCF计算机软件能力认证
对于平面直角坐标系上的坐标xy,小P定义了一个包含n个操作的序列Tt1t2tn。其中每个操作ti1≤i≤n)包含两个参数dxi和dyi,表示将坐标xy平移至xdxiydyi处。现给定m个初始坐标,试计算对每个坐标xjyj1≤j≤m)依次进行T中n个操作后的最终坐标。
2024-11-21 13:07:00
747
原创 第23次CCF计算机软件能力认证
A1A2⋯An是一个由n个(即非负整数)组成的数组。在此基础上,我们用数组B1⋯Bn表示A的前缀最大值。BimaxA1A2⋯Ai如上所示,Bi定义为数组A中前i个数的最大值。根据该定义易知A1B1,且随着i的增大,Bi单调不降。此外,我们用sumA1A2⋯An表示数组A中n个数的总和。现已知数组B,我们想要根据B的值来反推数组A。
2024-11-18 20:55:46
1141
原创 第32次CCF计算机软件能力认证第4题-宝藏(个人题解代码+满分标答代码)
西西艾弗岛上埋藏着一份宝藏,小C根据藏宝图找到了宝藏的位置。n1∼n2×2lrl∼r998244353经过小C2×2AA2×2BB小C将所有的时刻发生的事件均记录了下来。具体地,共有milrl∼r由于小C并不会这个问题,他向你发起了求助。你需要帮助小C求出所有类型为2的事件所对应的密码。
2024-11-10 15:32:43
813
原创 CCF-CSP - 小技巧
5、c++中sort只能用于一维list和结构体的排序,二维的数组转化为结构体数组来进行排序。2.c++从char数组的第二位开始读入string。6....(未完待续。
2024-11-10 15:15:22
203
原创 VScode中使用Cmake遇到的问题及其解决方法[最全+亲测有效]
我在网上看见了很多的解决方法的教程(包括重新安装一次都没有成功,下面我把我最后终于成功的过程写下↓)首先是安装cmake,如果遇见了↓这个错的小伙伴error-1solution-1:在系统的环境变量里面添加.../cmake/bin的的PATH的环境变量,如果还不成功,建议把cmake装在c盘下面,不要装在D,E盘了。如果还不成功,建议尝试一下把终端的目录调整到其他的盘试一试。
2024-11-09 13:01:00
1083
原创 xftp连接中不成功 + sudo vim 修改sshd_config不成功的解决方法
喵的,终于成功了,一个xftp连接半天不成功。(添加上面的内容就可以连接成功了↑)我们使用sudo vim不成功,但是我们使用sudo su就可以 了!root用户权利更大!
2024-11-06 20:03:52
461
原创 操作系统期中复习2-4单元
1、直接消息通信:使用发送原语(send(P,message))和接受原语(receive(Q,message))来进行通信。优:方便管理和维护,便于扩充,便于移植,更稳定 (更少的代码运行在核心态) ,更安全。:由用户线程库进行管理的线程,内核看不到用户线程,创建和调度不需要内核的干预。尽可能缩小内核,将功能移到用户空间(第一个微内核系统:CMU的Mach)早期操作系统:规模小,简单,功能有限,无结构(优:简化了系统设计和实现,便于调试和升级维护。线程的资源来自进程;使用开辟一个空间,一个写,一个读。
2024-11-02 19:03:55
367
原创 操作系统期中复习第一单元
内存中存放多道程序,当某道程序因某种原因如执行I/O操作时而不能继续运行放弃CPU时,操作系统便调度另一程序运行(想象有两个程序,一个在I/O另一个就CPU,一个在CPU,另一个就在I/O)集群系统(松耦合):通过专用网络连接,把一群计算机,虚拟化为一台有超强计算机。特权指令:可能引起系统崩溃的指令,只能运行在内核模式(所有的I/O指令)非对称多处理(ASMP): 各个处理器不对等(分主、从处理器)对称多处理(SMP) : 每一个核处理能力一样。一个芯片多个核,一个核即一个处理器。
2024-11-01 17:30:00
213
1
原创 [poem]小小诗-献给想要放弃的你
keep your mind on your task, stay focused on your work , my homie;hard and forward;determined and ahead;by the way:Being yourself is always a commendable and admirable endeavor
2024-10-13 22:16:49
145
原创 第33次CCF计算机软件能力认证-第4题十滴水[详细解析+标答+个人解答]
十滴水是一个非常经典的小游戏。小C正在玩一个一维版本的十滴水游戏。我们通过一个例子描述游戏的基本规则。游戏在一个1×c的网格上进行,格子用整数x1≤x≤c编号,编号从左往右依次递增。网格内m个格子里有1∼4滴水,其余格子里没有水。在我们的例子中,cm5,按照编号顺序,每个格子中分别有24442滴水。玩家可以进行若干次操作,每次操作中,玩家选择一个有水的格子,将格子的水滴数加一。任何时刻若某个格子的水滴数大于等于5,这个格子里的水滴就会向两侧。
2024-10-08 20:36:34
978
2
原创 KMP整理+个人推导+快速上手理解
当s去匹配target的时候,匹配导了target[6] : e的时候,匹配失败了,那我们不需要仅仅向前移动一格,可以直接移到target[4] 处进行再匹配。这个是我自己写的(个人推导,可能在时间复杂度上表现较弱,但是非常帮助初学者进行理解!ne[i] : 当s[i]和target不匹配的时候,可以向前移动几格。下面是代码, ne 是next数组。下面先有暴力做法,再给出相对正确做法。那么ne[6] = 3表示前进3.
2024-09-21 16:49:02
296
原创 第十九次CCF计算机软件能力认证-乔乔和牛牛逛超市
乔乔和牛牛去逛超市了,超市里有n种商品,他们决定买一些商品回家。但是,第i种商品一旦被选择,购买的个数就必须是Li和Ri之间的整数(含端点)。xyxyLiRi购买一个商品带来的开心程度和这个商品购买的个数有关,若第i个商品购买了xi个,xi0,则收益为aixi2bixici,否则为0。现在牛牛和乔乔想知道逛超市的最大总开心程度是多少。
2024-09-20 18:45:09
714
原创 第十九次CCF计算机软件能力认证-1246(过64%的代码-个人题解)
1246这四个数字有一个神奇的性质:如果将其分别取以2为底的幂,得到的分别是241664,仍是由这四个数字组成的。我们从数字串1开始,每秒钟它的每一位都会独立地变成2的幂。显然,这些数字串都仅包含1246这四个数字。输入整数n和数字串S,请你求出S在第n秒钟的数字串共出现了几次?由于答案可能很大,只需要你输出它对998244353取模的结果。
2024-09-20 11:55:04
874
原创 第十九次CCF计算机软件能力认证题目解析(详细题解+代码+个人解读+持续跟新)
(上图中(2,0)和(2,2)对于红线来说,(2,0)两个投影比较都为小于,而(2,2两个比较都为大于),则两个点应该不同类)题目我的思路很简单,对于一个直线 L,一个点node, 考虑这个node在这个直线的相对位置,都在点的一侧的就是一类的点(就是把点延x,y轴向直线做投影,看投影的点与node的相对位置,判断左右和上下来区分,两侧的点的相对大小是不同的)这样,对于任意一个的未知类别的点,我们就可以根据它是位于直线的哪一侧来预测它的类别了。所有点的坐标和给定直线的三个参数均为整数,且绝对值。
2024-09-10 22:46:09
860
原创 What is Error-Correcting Output Codes(ECOC)?
纠错输出码(Error-Correcting Output Codes,简称ECOC)是一种机器学习中用于处理多类分类问题的策略。但是如果我们输出的是(+1 , - 1 , -1),和A、B、C都不一样,那么我们就要计算明汉距离,距离最近的为该类。如果输出 (+1 , -1 , +1)那么就是A类,剩下的类似。为每个类别设定一个优先级,当出现距离相同时,选择优先级更高的类别。汉明距离 = 0 + 0 + 1 = 1。汉明距离 = 1 + 1 + 0 = 2。汉明距离 = 0 + 1 + 0 = 1。
2024-09-09 08:57:13
309
原创 What is Approximation Ratio?
假设有一个优化问题,其最优解的值是OPT,用时间T,而我们的算法得到的解的值是ALG,用时间t。如果算法有一个2的近似比率,那么我们可以保证ALG ≤ 2 * OPT and t ≤ 2 * T。这意味着算法找到的解的“成本(时间)”和“答案”不会超过最优解的两倍。近似比率是用来衡量一个算法找到的近似解与最优解之间的差距的一个量化指标.
2024-09-06 19:24:54
315
原创 GNN中的Over-smoothing与Over-squashing问题
GNN会根据邻居节点的特征更新每个节点的特征,假如A与B、C相连(有亲密关系,兴趣可能受对方影响),经过一层传播后,用户A的特征可能变为:兴趣:运动和音乐的混合。所有用户的特征趋向于一致,失去了原有的差异性。可能因为网络过深,那么在多层传播后,信息可能会被过度压缩(本质是特征减少了,当层数过多时会大大杂糅信息,导致特征减少,输出维度过小也会),导致细节丢失。Over-smoothing 是指随着GNN网络层数的增加,节点的特征表示逐渐趋向于一致,导致不同节点的特征差异变得越来越小的现象.
2024-09-06 19:13:04
672
原创 What is Convolutional Neural Network(CNN)?
通过减小特征图的大小来减少计算复杂性。它通过选择池化窗口内的最大值或平均值来实现。这有助于提取最重要的特征。卷积网络的卷积层中使用了卷积操作,这个操作可以捕捉到图像中的局部特征而不受其位置的影响。,方便从初始位置以步长为单位可以刚好滑倒末尾位置,通俗地讲就是为了总长能被步长整除。那么由于(1,2,5,6)里面最大的是 6 ,所以。假设现在有一个4 x 4 的特征矩阵。我们可以通过下面这个样例来理解。
2024-09-02 20:20:29
601
原创 machine learning - 2
3):就像在一个抽奖盒里面摸,训练集摸n次,测试集摸m次,但是每摸一次会把小球放回盒子里。折交叉验证法, 就的每k个数据取一个座位测试集。训练误差 并不是越小越好,太小会过拟合。泛化误差 也可以认为是预测时的误差。差全率:猜对答案是“Yes”的概率。查准率:猜“Yes”猜对的概率。
2024-09-02 17:41:44
552
原创 [LS]The Constraint Satisfaction Problems
D = {D1 , D2 , D3 , ... ,Dn} 其中Di = [ai,bi]为xi的范围。C = {C1 , C2,...,Cm} 其中Cj = 一个限制条件,例如 x1 + x2 > 10。CSP 可以简单理解为一个多元方程寻求最优解,实际举例有n皇后问题,有点像多模态。
2024-08-31 20:33:48
322
原创 KISS(Keep It Sample,Stupid)[完整代码]
它的伪随机数产生器的Period about 2^123,周期很长,并且来自于多个产生器的共同作用之下而得,原文的这这句话很有意思:
2024-08-23 20:31:15
182
原创 [读论文-2]An Overview of Variants and Advancements of PSO Algorithm
每一个iteration里面计算新的v , 已经 新的 的 x , 然后比较个人最优和全局最优,看看能不能进行更新,反复进行下去,得到最优位置Pbest,最优个人reward: fPbest。
2024-08-07 23:33:27
324
原创 网页保护用户 小tips
在使用创建web开发的过程中,直接使用用户名url,容易造成用户信息的被攻击,例如对方直接访问 ../../.../username 的网页,可以窃取用户信息,然而把usename变成一堆乱码就安全的多。
2024-08-04 16:30:39
157
原创 [读论文-1]DIFUSCO: Graph-based Diffusion Solvers for Combinatorial Optimization
简介: 这篇论文主要介绍了一个新的模型DIFUSCO : 这个model 文中实现的可以解决的问题是TSP and MIS ,model 的主要实现方法是先根据diffusion model 进行向前传播-进行加噪声,然后进行先后传播进行去噪声。去噪声用的是12层的Anisotropic Graph Neural Networks,Graph节点数量为256.(网络是监督学习的)
2024-07-31 20:47:35
974
原创 [Tensor学习]你不得不知道的知识点-切点-反转
如果tensor是多维的,比如说。那么有 a[ : , :] == a。a[ 第一维 ,第二维] ...
2024-07-17 20:00:45
228
原创 DFS-Indeed笔试题-圆桌座位
去判断这种等价是很困难的。但是,因为可以旋转,所以每一个数字都有机会座位开头,我们如果规定必须用1开始,那么。刚开始在dfs()函数里面传入了str作为记录状态,结果T了。对于题目中的座位排序会像古老电话一样,可以轮盘旋转等价。如果两个方案只有旋转角度不同,则我们将其视为一种方案。(1) .是否 第x - 1个和第x个在朋友关系中;现在要给他们安排座位,要求所有相邻的人不能是朋友。后来改为了path[ ] 数组来进行记录就AC了。对朋友关系是指,编号是。输出一个数,表示总方案数。
2024-05-27 19:36:14
1685
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人