[读论文-1]DIFUSCO: Graph-based Diffusion Solvers for Combinatorial Optimization

简介: 这篇论文主要介绍了一个新的模型DIFUSCO : 这个model 文中实现的可以解决的问题是TSP and MIS ,model 的主要实现方法是先根据diffusion model 进行向前传播-进行加噪声,然后进行先后传播进行去噪声。去噪声用的是12层的Anisotropic Graph Neural Networks,Graph节点数量为256.(网络是监督学习的)

该模型的效果非常的好:

code is available at here

下面是详细介绍:


Introduction 里面介绍了三种求解NPC问题的方法 - 自回归,非自回归,启发式方法。

分别介绍了三种方法的缺点:

自回归: Those methods typically suffer from the costly computation in their sequential decoding parts and hence are difficult to scale up to large problems

非自回归:unavoidably limits t

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值