简介: 这篇论文主要介绍了一个新的模型DIFUSCO : 这个model 文中实现的可以解决的问题是TSP and MIS ,model 的主要实现方法是先根据diffusion model 进行向前传播-进行加噪声,然后进行先后传播进行去噪声。去噪声用的是12层的Anisotropic Graph Neural Networks,Graph节点数量为256.(网络是监督学习的)
该模型的效果非常的好:
code is available at here
下面是详细介绍:
Introduction 里面介绍了三种求解NPC问题的方法 - 自回归,非自回归,启发式方法。
分别介绍了三种方法的缺点:
自回归: Those methods typically suffer from the costly computation in their sequential decoding parts and hence are difficult to scale up to large problems
非自回归:unavoidably limits t