
machineLearning
RedCap.
No body is nobody。
Some body is somebody。
本人性格积极向上,阳光开朗,热爱自由,追求自己的梦想,永不言弃。无论遇到什么困难,我都会坚定不移地向前走,相信自己的能力和潜力。我喜欢挑战自己,不断学习成长,努力成为更好的自己。我相信只要心怀希望,努力奋斗,一切困难都会迎刃而解。希望能够在未来的生活中,继续保持乐观向上的态度,勇敢面对一切挑战,活出自己想要的精彩人生。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
[读论文-2]An Overview of Variants and Advancements of PSO Algorithm
每一个iteration里面计算新的v , 已经 新的 的 x , 然后比较个人最优和全局最优,看看能不能进行更新,反复进行下去,得到最优位置Pbest,最优个人reward: fPbest。原创 2024-08-07 23:33:27 · 324 阅读 · 0 评论 -
KISS(Keep It Sample,Stupid)[完整代码]
它的伪随机数产生器的Period about 2^123,周期很长,并且来自于多个产生器的共同作用之下而得,原文的这这句话很有意思:原创 2024-08-23 20:31:15 · 183 阅读 · 0 评论 -
What is Approximation Ratio?
假设有一个优化问题,其最优解的值是OPT,用时间T,而我们的算法得到的解的值是ALG,用时间t。如果算法有一个2的近似比率,那么我们可以保证ALG ≤ 2 * OPT and t ≤ 2 * T。这意味着算法找到的解的“成本(时间)”和“答案”不会超过最优解的两倍。近似比率是用来衡量一个算法找到的近似解与最优解之间的差距的一个量化指标.原创 2024-09-06 19:24:54 · 321 阅读 · 0 评论 -
GNN中的Over-smoothing与Over-squashing问题
GNN会根据邻居节点的特征更新每个节点的特征,假如A与B、C相连(有亲密关系,兴趣可能受对方影响),经过一层传播后,用户A的特征可能变为:兴趣:运动和音乐的混合。所有用户的特征趋向于一致,失去了原有的差异性。可能因为网络过深,那么在多层传播后,信息可能会被过度压缩(本质是特征减少了,当层数过多时会大大杂糅信息,导致特征减少,输出维度过小也会),导致细节丢失。Over-smoothing 是指随着GNN网络层数的增加,节点的特征表示逐渐趋向于一致,导致不同节点的特征差异变得越来越小的现象.原创 2024-09-06 19:13:04 · 674 阅读 · 0 评论 -
[机器学习]SVM支持向量机的个人笔记
手写纯享版(字丑,不喜勿喷)原创 2024-09-11 19:58:44 · 166 阅读 · 0 评论 -
What is Error-Correcting Output Codes(ECOC)?
纠错输出码(Error-Correcting Output Codes,简称ECOC)是一种机器学习中用于处理多类分类问题的策略。但是如果我们输出的是(+1 , - 1 , -1),和A、B、C都不一样,那么我们就要计算明汉距离,距离最近的为该类。如果输出 (+1 , -1 , +1)那么就是A类,剩下的类似。为每个类别设定一个优先级,当出现距离相同时,选择优先级更高的类别。汉明距离 = 0 + 0 + 1 = 1。汉明距离 = 1 + 1 + 0 = 2。汉明距离 = 0 + 1 + 0 = 1。原创 2024-09-09 08:57:13 · 309 阅读 · 0 评论 -
What is Convolutional Neural Network(CNN)?
通过减小特征图的大小来减少计算复杂性。它通过选择池化窗口内的最大值或平均值来实现。这有助于提取最重要的特征。卷积网络的卷积层中使用了卷积操作,这个操作可以捕捉到图像中的局部特征而不受其位置的影响。,方便从初始位置以步长为单位可以刚好滑倒末尾位置,通俗地讲就是为了总长能被步长整除。那么由于(1,2,5,6)里面最大的是 6 ,所以。假设现在有一个4 x 4 的特征矩阵。我们可以通过下面这个样例来理解。原创 2024-09-02 20:20:29 · 601 阅读 · 0 评论 -
[LS]The Constraint Satisfaction Problems
D = {D1 , D2 , D3 , ... ,Dn} 其中Di = [ai,bi]为xi的范围。C = {C1 , C2,...,Cm} 其中Cj = 一个限制条件,例如 x1 + x2 > 10。CSP 可以简单理解为一个多元方程寻求最优解,实际举例有n皇后问题,有点像多模态。原创 2024-08-31 20:33:48 · 322 阅读 · 0 评论 -
[读论文-1]DIFUSCO: Graph-based Diffusion Solvers for Combinatorial Optimization
简介: 这篇论文主要介绍了一个新的模型DIFUSCO : 这个model 文中实现的可以解决的问题是TSP and MIS ,model 的主要实现方法是先根据diffusion model 进行向前传播-进行加噪声,然后进行先后传播进行去噪声。去噪声用的是12层的Anisotropic Graph Neural Networks,Graph节点数量为256.(网络是监督学习的)原创 2024-07-31 20:47:35 · 975 阅读 · 0 评论 -
machine learning - 2
3):就像在一个抽奖盒里面摸,训练集摸n次,测试集摸m次,但是每摸一次会把小球放回盒子里。折交叉验证法, 就的每k个数据取一个座位测试集。训练误差 并不是越小越好,太小会过拟合。泛化误差 也可以认为是预测时的误差。差全率:猜对答案是“Yes”的概率。查准率:猜“Yes”猜对的概率。原创 2024-09-02 17:41:44 · 553 阅读 · 0 评论