本本本添哥
奶爸的编程之路,也就一周冷个三天~
专门分享AI大模型/Java微服务/计算机软考/项目管理/个人成长/思维框架/效能工具等相关内容
欢迎关注我的公众号:本本本添哥
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【项目实战】Milvus一个开源的向量数据库,专为大规模向量数据的相似性搜索而设计。
Milvus 是一个开源的向量数据库,专为大规模向量数据的相似性搜索而设计。它能够高效地存储、索引和查询大量的高维向量数据,适用于多种场景,包括但不限于图像检索、视频分析、推荐系统、自然语言处理等。原创 2024-11-01 12:52:40 · 258 阅读 · 0 评论 -
【人工智能】Dify,为开发者提供了一站式的解决方案,使他们能够专注于核心业务逻辑的实现,而不是底层技术的实现细节,让更多的开发者能够轻松地构建自己的AI应用。
2.1 目标用户:企业开发者:希望快速构建AI应用的企业团队。独立开发者:个人开发者希望通过Dify平台快速实现自己的创意。研究人员:从事自然语言处理和机器学习领域的研究者,需要一个高效的实验平台。2.2 核心功能:大语言模型支持:集成多个主流大语言模型,如BERT、GPT等。Prompt编排界面:提供直观的界面用于设计和测试Prompt。RAG引擎:高质量的检索增强生成引擎,提高生成内容的相关性和准确性。AI代理框架:支持创建自定义的AI代理,实现特定的业务逻辑。低代码工作流。原创 2024-11-03 08:25:21 · 1628 阅读 · 0 评论 -
【人工智能】【项目实战】 使用 Docker 和 Docker Compose 安装 Milvus v2.2.11以及可视化管理工具 attu
Milvus 是一个开源的向量相似度搜索引擎,它支持多种ANN(Approximate Nearest Neighbor)索引库,可以用于处理大规模的向量数据。使用 Docker 安装 Milvus 是一种简单快捷的方法。原创 2024-10-21 21:37:00 · 606 阅读 · 0 评论 -
【人工智能】大型语言模型 (LLM), 是一种基于深度神经网络的模型,特别是基于Transformer架构的模型。
大型语言模型 (LLM),Large Language Model。大型语言模型 (LLM),是自然语言处理(NLP)领域的重要组成部分大型语言模型 (LLM),通过深度学习技术训练而成,能够理解和生成人类语言。大型语言模型 (LLM), 具有数亿到数千亿个参数。大型语言模型 (LLM),基于大量的文本数据进行预训练,从而具备了广泛的语言理解能力和生成能力。大型语言模型 (LLM), 是一种基于深度神经网络的模型,特别是基于Transformer架构的模型。原创 2024-09-20 20:32:12 · 1525 阅读 · 0 评论 -
【人工智能】检索增强生成(Retrieval-Augmented Generation,简称RAG)是一种结合了信息检索和文本生成的人工智能技术。
RAG,全称是Retrieval-Augmented Generation。RAG,是一种结合了检索和生成的技术方法。RAG,通过从大规模的文档集合中检索相关信息来增强语言模型的生成能力。RAG,使得语言模型(1)不仅能够基于预训练的知识生成文本(2)还能实时访问外部知识库以提高回答问题的准确性和相关性。原创 2024-09-20 20:23:57 · 1383 阅读 · 0 评论 -
【项目实战】解决Maven找不到组件Could not find artifact -baidutranslate:pom:1.0.0.3-SNAPSHOT in spring-snapshots
在使用Spring AI Alibaba相关组件时,不少开发者可能会遇到类似的依赖找不到的错误:。出现这个错误通常有以下几个原因:当依赖在远程仓库不可用时,手动拉取源码并安装到本地仓库是一个有效的解决方法:首先需要获取对应版本的源码,可以通过以下方式:从项目的GitHub/Gitee仓库克隆:直接下载源码压缩包并解压在源码中找到对应的百度翻译组件模块,通常路径类似:步骤3:使用Maven安装到本地仓库进入模块目录,执行Maven安装命令:参数说明:安装成功后,可以在本地Maven仓库中查看:如原创 2025-07-29 22:42:15 · 6 阅读 · 0 评论 -
【异常】Error: ollama server not responding - timed out waiting for server to start
定位具体错误(如端口、权限、资源),再针对性解决。若日志显示“内存不足”,则需升级硬件或使用更小的模型(如。错误时,通常意味着 Ollama 服务器启动失败或无法在规定时间内响应。:观察输出的日志,若有具体错误(如“端口被占用”“权限不足”),可直接定位问题。若修改过 Ollama 配置文件(如。优先通过 ollama serve。Ollama 默认使用端口。原创 2025-07-21 23:53:31 · 45 阅读 · 0 评论 -
【异常】NonTransientAiException: HTTP 428 - {“error“:{“message“:“HK key error , is no exit ! HK key 不存在
这表明API请求被拒绝,原因是你提供的HK开头的API密钥无效或不存在于该平台上。根据你提供的错误信息。原创 2025-07-14 19:40:30 · 399 阅读 · 0 评论 -
【项目实战】STT 是 **Speech to Text** 的缩写,中文通常译为“语音转文字”,是一种将人类语音信号转换为文本的技术。
STT 是的缩写,中文通常译为“语音转文字”,是一种将人类语音信号转换为文本的技术。它属于语音处理和自然语言处理(NLP)的交叉领域,核心是通过算法让计算机“听懂”人类说话,并将语音内容转化为可编辑、可存储的文字形式。随着深度学习的发展,STT 技术的准确率大幅提升(尤其是在清晰语音和常见语种场景下),但在噪音环境、方言、多口音等复杂场景中仍有优化空间。原创 2025-07-11 18:03:35 · 35 阅读 · 0 评论 -
【项目实战】DJL(Deep Java Library)旨在让 Java 开发者能够轻松使用深度学习模型,无需精通 Python 或复杂的深度学习框架。
旨在让 Java 开发者能够轻松使用深度学习模型,无需精通 Python 或复杂的深度学习框架。它提供了统一的 API 接口,支持多种深度学习引擎(如 PyTorch、TensorFlow、MXNet 等),并深度优化了 Java 环境下的性能和易用性。DJL 是 Amazon 开发的。原创 2025-07-10 09:06:50 · 48 阅读 · 0 评论 -
【人工智能】在自动语音识别(ASR)中识别字母A、B、C等孤立词,核心是通过深度学习模型将语音信号转化为对应的字符序列。
在自动语音识别(ASR)中识别字母A、B、C等孤立词,核心是通过深度学习模型将语音信号转化为对应的字符序列。识别A、B、C等字母的ASR系统需结合特征提取、深度学习模型和序列解码技术。**端到端模型(如CTC、RNN-T)预训练模型(如Wav2Vec 2.0、HuBERT)**是当前最有效的解决方案,尤其在小词汇量场景中表现优异。通过数据增强、模型压缩和混合架构设计,可进一步提升识别准确率和鲁棒性。原创 2025-07-10 09:01:23 · 20 阅读 · 0 评论 -
【项目实战】两种操作 Milvus 客户端的方式:官方客户端工具(SDK)+ 第三方可视化工具(以 Attu 为例)
除了 Attu,还有一些其他第三方工具(如 Milvus Manager),但 Attu 与 Milvus 兼容性最好,建议优先使用。根据你的需求选择合适的方式即可~Milvus 官方提供的多语言 SDK 是最常用的操作方式,适合通过代码实现自动化的数据管理和业务集成。Attu 是 Milvus 官方推荐的可视化工具,适合非开发人员快速查看和管理数据,操作更直观。原创 2025-07-08 09:05:49 · 63 阅读 · 0 评论 -
【置顶】【人工智能】常用的Prompt Engineering 提示词工程最佳实践汇总集合
摘要:本文提供两类实用Prompt模板:(1) 开发工程师常用:通过Java实体类自动生成Mock接口JSON数据示例;(2) 内容创作者专用:包含公众号文章创作标准模板,要求标题新颖、内容深度与通俗性兼顾,并设计互动性结尾。两个模板均采用结构化指令格式,适用于不同场景的自动化内容生成需求。(149字)原创 2025-06-30 17:11:29 · 696 阅读 · 0 评论 -
【人工智能】如果大模型的生产上忽然 Token 数猛增,并且很多用户出现了超时的现象。这个时候请你找出可能的原因以及处理方法。
摘要 大模型生产中token数猛增及用户超时问题可能由以下原因导致:输入文本变长、复杂任务请求增多、模型参数调整导致生成策略改变、并发请求过高等。解决方案包括优化用户输入提示、调整模型参数、性能优化、扩展资源、设置限流机制及建立监控预警系统。此外,还需考虑模型退化/过拟合、数据分布变化、外部依赖问题和缓存机制失效等因素,这些都可能间接导致token数异常增加和处理延迟。原创 2025-06-04 10:02:29 · 321 阅读 · 0 评论 -
【人工智能】大模型生成文字出现看不清或输出有问题
摘要:针对大模型生成文字模糊或输出异常的问题,提出多模态融合方案,通过结合文字与图像生成技术(如Stable Diffusion)优化视觉效果。解决方案包括:1)后处理优化文本细节;2)改进输入提示的精确性;3)调整模型温度等参数;4)应用RAG技术引入外部知识;5)确保训练数据质量。这些方法可有效提升文字生成准确性和背景适配性。(149字)原创 2025-06-04 09:55:16 · 65 阅读 · 0 评论 -
【好物推荐】免费AI配音神器TTSMaker上线 https://ttsmaker.cn/
TTSMaker:是马克配音(MakVoice)推出的免费 AI 文字转语音工具,支持 50 多种语种和 300 多个语音包。用户可直接访问其在线平台,输入文本,选择语言和声音,还能调节语速和音调等,然后一键转换成语音并下载音频文件,且可免费用于视频配音、有声读物等场景。原创 2025-06-03 16:30:42 · 118 阅读 · 0 评论 -
【人工智能】怎么样才能保证你的意图识别大模型模块的准确性?
意图识别模型的准确性提升依赖于高质量数据、合适的模型选择与调优、多轮测试以及持续迭代优化。首先,模型需要丰富多样的语料和精准的标注数据,同时进行数据清洗以去除噪声。其次,根据场景选择合适的模型架构,并通过调参和引入外部知识增强模型的理解能力。接着,通过测试集和人工评估来发现模型的问题,并与基准线对比以找出差距。最后,持续监控错误案例,进行小步更新,并结合用户反馈进行优化。此外,结合规则和模型的双重判断机制,可以更高效地处理简单和复杂的意图识别任务。通过这些方法,可以逐步提升意图识别模型的准确性和用户满意度。原创 2025-05-23 15:37:16 · 88 阅读 · 0 评论 -
【人工智能】借助API让大模型自动化地处理任务,开发者可以将大模型的能力封装为可调用的服务,从而实现高效、灵活的任务自动化借助通义千问API自动化处理大规模问卷反馈
当面对1万多份开放式问卷反馈时,人工逐条阅读和分析变得极其低效。我们将学习如何使用通义千问API来自动化处理这些文本数据,提取关键改进意见并进行分析归类。如何使用通义千问API批量处理文本数据设计有效的提示词获取结构化结果实现分批处理和错误恢复机制对结果进行统计分析这种自动化方法可以显著提高大规模文本数据处理效率,同时保证分析质量的一致性。原创 2025-05-16 14:38:30 · 54 阅读 · 0 评论 -
【人工智能】DUDULab,由百度品牌部门运营的 AIGC 平台,专注于生成原创内容,包括插画设计、故事辅助撰写和宣发文案生成等。
DuDuLab是百度孵化的创新NFT项目,融合了人工智能生成内容(AIGC)与NFT技术,致力于探索Web3.0的新领域。项目以DuDu熊IP为核心,通过长篇小说《DuDu的冒险》和“DUDU Island”社区,为用户提供沉浸式文化体验。AIGC技术提升了内容生产效率,AI语音识别增强了用户互动。项目引入Soulbound-token管理机制和ERC-3525合约,使NFT具备可成长性。DuDuLab旨在打造Web3迪斯尼式社区,成为NFT IP聚合平台,并通过全联路生态网推动企业Web3转型。该项目在熊原创 2025-05-16 14:32:45 · 34 阅读 · 0 评论 -
【人工智能】Stability AI是一家专注于人工智能研究与开发的公司,其产品Stable Diffusion是一款开源的文本生成图像模型,凭借其高质量输出和开源特性,已成为全球创作者首选工具。
艺术创作:AI 绘画平台 Krea 用户日均生成 500 万张图片。特点:支持 1024x1024 分辨率,多语言提示(中文、日语)。电商:虚拟试衣(SHEIN 用其生成服装展示图)。原创 2025-05-07 10:31:19 · 108 阅读 · 0 评论 -
【人工智能】Python机器学习和深度学习中常用的库(Scikit-learn/TensorFlow/PyTorch/MXNet/Chainer/Keras/LightGBM/XGBoost)
【代码】【人工智能】Python机器学习和深度学习中常用的库(Scikit-learn/TensorFlow/PyTorch/MXNet/Chainer/Keras/LightGBM/XGBoost)原创 2025-05-07 10:32:12 · 68 阅读 · 0 评论 -
【人工智能】在深度学习领域,计算平台(TensorFlow/PyTorch/Keras/Caffe/MXNet)如同工匠手中的工具,直接影响开发效率与模型性能。
在深度学习领域,计算平台如同工匠手中的工具,直接影响开发效率与模型性能。原创 2025-05-06 09:57:45 · 558 阅读 · 0 评论 -
【人工智能】调用 OpenAI API 并管理 API Key 的详细指南
以下是调用 OpenAI API 并管理 API Key 的详细指南,结合最新操作流程与安全实践,助您高效集成 OpenAI 服务:通过以下步骤,您可以安全高效地调用 OpenAI API。建议在生产环境中结合密钥管理服务(如 AWS Secrets Manager)和请求缓存机制,提升系统稳定性。原创 2025-05-07 10:32:00 · 294 阅读 · 0 评论 -
【人工智能】 模型评估关键概念,模型拟合评估的核心是判断模型在训练数据和未知数据上的表现,避免过拟合或欠拟合。
模型在训练与泛化间达到平衡。原创 2025-05-07 09:45:59 · 42 阅读 · 0 评论 -
【人工智能】(三个臭皮匠,赛过诸葛亮)集成学习是一种通过组合多个基学习器来提升模型性能的机器学习技术,通过将多个弱学习器集成,形成一个性能更优的强学习器,有效提高模型的预测准确性、稳定性和泛化能力。
集成学习是一种通过组合多个基学习器来提升模型性能的机器学习技术,其核心思想是“三个臭皮匠,赛过诸葛亮”,通过将多个弱学习器集成,形成一个性能更优的强学习器,有效提高模型的预测准确性、稳定性和泛化能力,主要包含以下几种方法:原创 2025-05-06 09:58:13 · 57 阅读 · 0 评论 -
【人工智能】语音处理作为人工智能与人类交互的重要桥梁,致力于让机器理解、生成和分析人类语音,实现高效的人机语音交互。其涵盖四大核心技术,各自承担不同功能,共同构建起智能语音生态。
语音处理作为人工智能与人类交互的重要桥梁,致力于让机器理解、生成和分析人类语音,实现高效的人机语音交互。其涵盖四大核心技术,各自承担不同功能,共同构建起智能语音生态。原创 2025-05-06 09:58:02 · 47 阅读 · 0 评论 -
【人工智能】数据集:机器学习与人工智能的基石
场景针对性:针对具体应用场景采集数据,如工业质检中采集特定产品的瑕疵图像,医疗领域收集患者的专属病例数据,确保数据与实际问题高度契合。隐私合规性:涉及用户隐私或商业机密的数据,需通过合法渠道采集并做好脱敏处理,如金融机构在构建风控模型时,需对客户交易数据进行加密和匿名化处理。动态更新性:随着业务发展持续扩充数据,例如电商平台定期收集用户新的购买行为数据,以优化推荐系统模型。原创 2025-05-06 09:57:54 · 112 阅读 · 0 评论 -
【人工智能】知识图谱:构建智能认知的知识网络
知识图谱作为人工智能领域的重要技术,通过结构化的方式描述现实世界中的实体及其关系,为机器理解知识、实现智能推理提供基础。知识图谱通过知识表示、推理与融合三大核心技术,将碎片化知识整合成结构化网络,为智能问答、推荐系统、决策支持等应用提供强大的知识支撑,推动人工智能从感知智能迈向认知智能。原创 2025-05-06 09:57:34 · 70 阅读 · 0 评论 -
【人工智能】推荐系统(协同过滤/内容推荐/混合推荐):智能决策背后的核心引擎
推荐系统作为人工智能领域的重要应用,通过挖掘用户与物品的潜在关联,为用户提供个性化推荐服务,在电商、社交、媒体等领域发挥关键作用。推荐系统通过协同过滤捕捉群体共性、内容推荐挖掘个体兴趣、混合推荐实现优势互补,精准满足用户个性化需求,有效提升用户体验与商业价值,已成为互联网产品实现用户增长与商业变现的核心驱动力。原创 2025-05-06 09:57:23 · 290 阅读 · 0 评论 -
【人工智能】计算机视觉(CV)致力于赋予计算机“看”和“理解”视觉世界的能力,通过算法处理和分析图像、视频等视觉信息,实现人类视觉系统的部分功能。
计算机视觉(CV)致力于赋予计算机“看”和“理解”视觉世界的能力,通过算法处理和分析图像、视频等视觉信息,实现人类视觉系统的部分功能。原创 2025-05-02 08:23:42 · 75 阅读 · 0 评论 -
【人工智能】通义千问 Max(Qwen-Max)是阿里云百炼平台推出的旗舰级大语言模型,主要面向复杂任务和多模态场景
通义千问Max(Qwen-Max)是阿里云百炼平台推出的旗舰级大语言模型,主要面向复杂任务和多模态场景,通义千问Max是阿里云在复杂任务和多模态领域的标杆模型,其高性能伴随较高成本,适合企业级深度应用。用户需根据任务复杂度、预算和实时性需求,在Max、Plus、Turbo之间权衡选择。原创 2025-04-22 13:49:36 · 514 阅读 · 0 评论 -
【人工智能】自然语言处理(NLP)核心技术解析
自然语言处理(NLP)旨在让计算机理解、处理并生成人类语言,是人工智能领域的重要研究方向。其涵盖众多关键技术,各有独特功能与应用场景,共同推动人机交互智能化发展。原创 2025-05-02 08:22:51 · 57 阅读 · 0 评论 -
【人工智能】在深度学习模型构建与优化的全流程中,计算机科学基础技术是不可或缺的关键支撑,它们贯穿数据处理、模型训练、性能评估到部署优化的各个环节
数据处理是深度学习的基石,其质量与特征直接影响模型性能,主要包含以下核心环节:优化算法旨在寻找模型参数的最优解,使模型损失函数最小化,核心方法如下:评估指标用于客观衡量模型性能,为模型优化提供方向:训练技术帮助模型更高效学习,突破数据和任务限制:硬件加速技术大幅提升深度学习计算效率:模型压缩旨在减小模型体积、降低计算量,便于部署:原创 2025-05-02 08:21:53 · 40 阅读 · 0 评论 -
【异常】使用OpenAI-HK提示404 - {‘message‘: ‘ENDPOINT ERROR‘, ‘type‘: ‘invalid_request_error‘,
如果未替换密钥或格式错误,会导致认证失败(例如401错误),但此处错误类型为404,说明服务端未找到对应资源,主要问题仍集中在端点地址。),也可能导致路径不匹配。但根据当前错误信息,核心问题更可能是地址未修改。该404错误是由于未正确配置API请求地址和API密钥导致的。通过调整,可解决因端点地址和API密钥不匹配导致的404错误。若未修改地址,请求会发送到错误的服务器,触发404错误。若问题仍存在,建议检查服务状态或联系平台支持。),而标准OpenAI密钥以。的API地址需要在原地址。原创 2025-04-24 09:31:00 · 340 阅读 · 0 评论 -
【异常】使用 OpenAI API 时,认证环节出现了问题提示openai.AuthenticationError: Authorization
错误表明在使用 OpenAI API 时,认证环节出现了问题。以下是一个完整的示例代码,包含了环境变量的检查和设置:请把。替换成你自己的实际 API 密钥。原创 2025-04-24 09:29:34 · 127 阅读 · 0 评论 -
【异常】ImportError: cannot import name ‘DashScope‘ from ‘langchain.llms‘
因为现在与大语言模型交互通常使用聊天模型类。按照步骤操作,你应该能够解决导入错误并成功使用。你可以使用以下命令来更新。的导入路径可能会有变动。版本不支持该导入,或者。这或许是因为你使用的。库的结构发生了变化。原创 2025-04-23 09:42:19 · 133 阅读 · 0 评论 -
【异常】ValueError: Invalid input type <class ‘dict‘>. Must be a PromptValue, str, or list of
方法把输入变量代入模板,从而生成一个字符串输入,接着将该字符串传递给。替换成你实际使用的大语言模型实例,在这个修改后的代码里,运用。方法所接收的输入类型不被允许,它仅支持。这样就能解决输入类型不匹配的问题。替换成你实际的模板字符串,同时把。下面是修改后的代码示例,可以把。类型,而你传入的是一个字典。原创 2025-04-23 09:42:04 · 45 阅读 · 0 评论 -
【项目实战】TorchVision 是 PyTorch 深度学习框架的扩展库,专注于计算机视觉任务,提供数据集加载、模型架构、图像变换工具和实用功能。
TorchVision 是 PyTorch 深度学习框架的扩展库,TorchVision 是 PyTorch 中专门用于计算机视觉任务的库,专注于计算机视觉任务,提供数据集加载、模型架构、图像变换工具和实用功能。TorchVision 是 PyTorch 生态中处理计算机视觉任务的核心工具包,其模块化设计覆盖了从数据加载、预处理到模型构建的全流程,极大简化了视觉项目的开发复杂度。开发者可通过灵活组合其组件快速搭建高效视觉系统。原创 2025-04-22 12:13:00 · 48 阅读 · 0 评论 -
【项目实战】PyTorch是一个基于 Python 的开源深度学习框架,由 Facebook(现 Meta)人工智能研究团队开发,以其动态计算图、高效的 GPU 加速和直观的Pythonic 接口著称
用户可直接使用 Python 的调试工具(如 pdb)和可视化工具(如 matplotlib)进行模型开发,无需额外学习新语法。支持自动微分:自动计算梯度,简化了反向传播算法的实现,方便进行模型的优化。无论是快速实验还是生产部署,PyTorch 均能提供高效灵活的解决方案,其持续迭代(如对 Python 3.12 的支持)也确保了技术的前沿性。方便地定义各种神经网络结构,如卷积神经网络(CNN)、循环神经网络(RNN)等,并进行模型的训练和优化。可以进行大规模的数值计算,支持 GPU 加速,提高计算效率。原创 2025-04-22 12:09:18 · 45 阅读 · 0 评论 -
【项目实战】TorchAudio 是 PyTorch 生态中专注于音频和信号处理的扩展库,TorchAudio 为 PyTorch 用户提供了从数据加载到模型部署的全套音频处理工具链。
提供预训练模型(如 Wav2Vec2、Tacotron2)用于语音分类、语音合成等任务,但需注意模型许可证限制(如 SquimSubjective 模型采用 CC-BY-NC 4.0 许可)。函数)、特征提取(梅尔频谱、MFCC)、频谱图生成等处理模块,所有计算基于 PyTorch 张量,支持 GPU 加速和自动求导,便于集成到深度学习流程中。TorchAudio 支持多种音频格式的加载与保存(如 WAV、MP3、FLAC 等),通过。如梅尔频率倒谱系数(MFCC)等,方便进行音频分类、语音识别等任务。原创 2025-04-22 12:16:28 · 90 阅读 · 0 评论