题目描述:给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
示例:
输入: [-2,1,-3,4,-1,2,1,-5,4],
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。
进阶:
如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的分治法求解。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/maximum-subarray
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
这个题目可以用dp的方法做出来,就是设个数组dp[i],表示nums[i]作为最后一个数字的最大字串和,那么,dp[i]的值可能是nums[i]+dp[i-1]或者是nums[i]+0;这取决于nums[i]是否大于0,然后问题就可以借出来了。
于是解题:
方法一(c语言):
int max(int i, int j) {
if(i>j){
return i;
}else {
return j;
}
}
int maxSubArray(int* nums, int numsSize){
int dp[numsSize];
for(int i=0; i < numsSize; i++) {
dp[i] = 0;
}
dp[0] = nums[0];
int maxNum = dp[0];
for(int i = 1; i < numsSize; i++) {
dp[i] = nums[i] + (dp[i-1] > 0 ? dp[i-1] : 0);
maxNum = max(dp[i], maxNum);
}
return maxNum;
}
方法二(java):
这个也是动态规划,是官方解答,是一种思想吧。
如果nums[i]的前一个值nums[i-1]小于零,这里的nums[i]表示的是原始的nums[i],而nums[i-1]表示的是原始的nums[i-1]作为最后一个数字的最大字串和,然后如果nums[i-1]小于0不加,就意味着num[i]结尾的最大字串就是它自己本身。
class Solution {
public int maxSubArray(int[] nums) {
int res = nums[0];
for (int i=1;i<nums.length;i++){
if (nums[i-1] > 0){
nums[i] += nums[i-1];
}
res = Math.max(res,nums[i]);
}
return res;
}
}