本文旨在探讨基于机器学习的电商产品评论情感分析系统的设计与实现。该系统综合运用了Hadoop、Scrapy爬虫、Django、Vue.js、Spark、机器学习和MySQL等多种技术,实现对电商平台上产品评论的高效采集、存储、处理及情感分析。首先,系统通过Scrapy爬虫从电商网站上抓取产品评论数据,并利用Hadoop的分布式存储和计算能力,实现海量评论数据的存储与管理。接着,利用Spark进行大数据预处理,包括去除重复评论、过滤无效信息、文本分词等步骤,为后续的情感分析提供高质量的数据集。在情感分析阶段,系统采用机器学习算法对预处理后的评论数据进行