👨🎓个人主页
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
1.1 文献来源
摘要:规模间歇电源并网引起的电网频率问题,导致对引入储能辅助调频的研究越发迫切。提出一种考虑储能电池参与一次调频技术经济模型的容量配置方法。阐述了储能电池功率和容量设计的通用方法;通过分析储能电池在调频运行过程中的成本和效益,基于全寿命周期理论,运用净现值法结合仿真模型构建储能电池参与一次调频的技术经济模型;设计了一种储能电池参与一次调频的充放电策略,在此基础上,考虑受风电出力波动影响的电网综合负荷,从与之对应的电网频率信号波动特性出发,在确定的电网调频及储能电池运行要求约束下,得出调频效果最优、经济性最优以及两者综合最优目标下的储能电池容量配置方案。仿真结果表明了该方法的合理性及有效性。本研究有助于推动储能电池在辅助调频服务上的示范与工程化应用。
关键词:
1.2 储能电池参与一次调频的方法
在图1 中,当负荷突然增加时,负荷频率特性曲线将由 L1( Δf) 移 至 L2 ( Δf) ,由 传 统 电 源 的 功 频 曲 线G( Δf) 可知其会自动增加出力,以阻止频率进一步下降,电网运行点将由稳定运行点 a 移至 b 点,对应的频率偏差从 0 下降至 Δf1 ( 其为负值) 。此时,利用储能电池模拟传统电源的下垂特性以实现参与一次调频,通过设置储能电池的虚拟单位调节功率 KE,对应储能电池的出力为如图 1 所示的 PE值。电网中的传统电源功率或负荷发生变化时,必然会引起电网频率的变化。当电网供电大于负荷需求时,电网频率会上升,依图 1 可知此时应控制储能电池从电网吸收功率; 当电网供电小于负荷需求时,电网频率会下降,此时应控制储能电池释放功率至电网。
在储能参与一次调频的方法确定的基础上,通过模拟传统电源的下垂特性,即建立起频率增量与储能出力的内在联系,实现储能参与一次调频; 然后结合仿真模型( 其中的阻容元件体现了储能在运行过程中的能量损耗) ,并计及功率转换系统 PCS( 包括 DC-DC和 DC-AC 变换器) ,进而形成储能参与电网调频的物理特性模型。
一、一次调频的技术要求与储能参与原理
-
基本技术要求
- 死区范围:电液型火电机组死区需控制在±0.033Hz内(机械液压型为±0.10Hz)。
- 响应时间:频率越限后15秒内需响应,45秒内实际出力与目标偏差需小于额定出力的±3%;储能系统整站响应时间需≤300ms。
- 功率限幅:机组最大负荷限幅为额定出力的6%,储能需按新能源额定容量的10%配置功率容量。
- 协调控制:与AGC指令冲突时闭锁AGC,避免频繁动作。
-
储能参与原理
储能模拟传统机组下垂特性,通过虚拟单位功率 KEKE 控制出力 PEPE:- 当频率下降时放电,频率上升时充电;
- 功率转换系统(PCS)实现快速功率双向调节;
- 与常规机组协同,改善暂态频率特性,减少频率偏移。
二、储能容量配置的核心指标
-
功率容量
- 按新能源额定容量的10%配置,典型范围100 kW–1 MW(对应1–10 MW新能源机组)。
- 需覆盖最恶劣工况(如新能源完全无功率支撑)。
-
能量容量
- 计算公式:Q=2P⋅t+0.2
- P:额定功率(kW);
- t:调频持续时间(通常1分钟);
- 0.2Q:预留20% SOC裕量(充放电各10%),避免过充/过放。
- 示例:7.5 MW机组需750 kW功率,1分钟调频需20 kWh能量(SOC预留10%上限/下限)。
- 时间特性
- 单次调频持续≤1分钟,能量需求通常≤20 kWh;
- 需满足秒级响应(300ms)和分钟级持续支撑。
三、技术经济模型构建与优化目标
- 模型框架
- 目标函数:
- 调频效果最优:最小化频率偏差积分(如∫|Δf|dt);
- 经济性最优:最小化全生命周期成本(投资+运维);
- 综合最优:加权多目标优化(如α·技术指标 + β·成本)。
- 关键变量:
- 充放电阈值(Qsoc_high、Qsoc_low);
- 购/售电功率(Pbuy、Psell);
- 额定功率 Prated 。
- 经济性参数
- 成本构成:
- 初始投资(功率型成本≈800元/kW,能量型成本≈2000元/kWh);
- 运维成本(占投资5–10%/年);
- 寿命折损(充放电深度影响循环次数)。
- 收益来源:
- 调频辅助服务补偿;
- 减少新能源弃电损失。
- 约束条件
- 技术约束:SOC运行区间(通常0.2–0.8),充放电倍率(高倍率锂电池优先);
- 电网约束:调频死区、响应时间、功率爬坡率;
- 寿命约束:避免SOC<0.1或>0.9,防止过充放。
四、容量配置的优化方法
- 基于充放电策略的优化
- SOC分区控制(图4示例):
SOC区间 | 充放电系数 KdKd | 动作策略 |
---|---|---|
0.4–0.6 | 1.0 | 满功率充放电 |
0.2–0.4/0.6–0.8 | 线性递减至0.5 | 限制功率避免SOC恶化 |
<0.2或>0.8 | 0 | 停止调频,保护电池寿命 |
- 自适应调整:根据频率偏差动态修正出力,SOC低时减少放电,高时减少充电。
-
求解算法
- 粒子群算法(PSO) :优化 Qsoc、Pbuy 等变量;
- 随机规划:考虑风电/负荷不确定性,生成多场景优化方案;
- 李雅普诺夫指数:评估容量配置策略的稳定性。
-
混合储能配置
- 锂电池+超级电容:
- 锂电池提供持续能量支撑;
- 超级电容响应瞬时功率冲击(300ms内);
- 经济性对比:锂电池成本低但循环寿命短,超级电容寿命长但能量密度低。
五、挑战与改进方向
-
现存问题
- 场景单一性:多数研究未耦合多应用场景(如调频+削峰填谷),经济性不足;
- 长周期优化缺失:缺乏全年尺度的SOC动态管理策略;
- 寿命模型简化:未充分计及充放电深度对寿命的非线性影响。
-
未来方向
- 多目标协同:联合优化一次调频、惯量支撑、新能源消纳;
- 寿命精确建模:引入SOH(健康状态)反馈的容量配置;
- 政策激励设计:完善调频补偿机制,提升储能投资回报。
结论:储能电池参与一次调频的容量配置需统筹技术指标(功率/能量/响应时间)与经济性(全生命周期成本),通过SOC分区控制、混合储能设计和智能算法求解,实现调频效果与成本的最优平衡。未来需深化多场景协同和寿命精确建模,以提升工程适用性。
1.3 流程图
📚2 运行结果
2.1 数据
2.2 文献结果
然后:基于储能参与一次调频的充放电策略,分别以一次调频效果最优、经济性最优和两者综合最优为目标,对控制变量 QSOC,high、QSOC,low、Pbuy ( 即 σb 、Prated ) 和 Psell ( 即 σs、Prated ) 进行寻优。
2.3 复现结果
本文基于粒子群算法求解,迭代图如下:
输出结果
J1 Qsoc,high Qsoc,low P,buy P,sell P,rated Qsoc,rms E,rated
J1 =
0.0093
Qsoc_high =
0.7021
Qsoc_low =
0.6986
P_buy =
0
P_sell =
5.2465
P_rated =
7
Qsoc_rms =
0.1149
E_rated =
2.2400
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]黄际元,李欣然,常敏,黎淑娟,刘卫健.考虑储能电池参与一次调频技术经济模型的容量配置方法[J].电工技术学报,2017,32(21):112-121.DOI:10.19595/j.cnki.1000-6753.tces.l70704.