1、会话图的构建
GCE-GNN提出构建全局图和局部图来更好的利用会话信息。如下图所示,a为局部图构造方式:一个会话构成一个局部图,局部图中的每条边都代表会话中两个相邻的项,此外局部图还包含自连接边。而全局图则在不同会话之间建立联系。如图b,对s1,s2,s3建立全局图,对于会话中的每一个物品k,以k为中心建立大小为
ξ
\xi
ξ的窗口,窗口中的其他元素与k在全局图中相连,将出现次数作为每条边的权重。(作者在b图右侧的全局图构建出错了,v1的邻接点应该是v2、v3、v4)
2、物品表征
2.1、全局物品表征
全局图的attetion计算如下:
其中,wij代表i之间j的权重,j是与i相邻的点。s=
1
∣
S
∣
∑
v
i
∈
S
h
v
i
\frac{1}{\mid S \mid}\sum\limits_{v_i\in S}^{}h_{v_{ \scriptsize i}}
∣S∣1vi∈S∑hvi,代表一个会话中所有物品特征的均值。该attention机制考虑了临界点与整个会话的契合程度,并根据契合程度和临界点的权重来计算attention
聚合更新计算如下:
将邻接点信息与自身信息结合,再多次重复上述操作,最终得到全局物品表示
2.2、局部物品表征
局部物品表征使用了很简单的attetion机制:
通过vi与vj的相似度来计算权重,然后根据权重进行聚合更新操作。由于有自连接边,所以加权汇聚的过程中实际上相当于同时做了信息传播和信息汇聚。
聚合更新计算:最后对全局表征加一层dropout防止过拟合,然后再与局部表征相加得到最终全局与局部相结合的物品表征
3、最终预测
GCE-GNN 将每个物品的位置信息也考虑在内,pl-i+1代表位置信息,zi是融合位置信息后的表征结果。
不同于SRGNN(将最后一个物品作为最后atteion的标准),GCE-GNN计算整个会话的平均特征,将平均特征作为最后attenion的标准