GCE-GNN

1、会话图的构建

  GCE-GNN提出构建全局图和局部图来更好的利用会话信息。如下图所示,a为局部图构造方式:一个会话构成一个局部图,局部图中的每条边都代表会话中两个相邻的项,此外局部图还包含自连接边。而全局图则在不同会话之间建立联系。如图b,对s1,s2,s3建立全局图,对于会话中的每一个物品k,以k为中心建立大小为 ξ \xi ξ的窗口,窗口中的其他元素与k在全局图中相连,将出现次数作为每条边的权重。(作者在b图右侧的全局图构建出错了,v1的邻接点应该是v2、v3、v4
在这里插入图片描述

2、物品表征

2.1、全局物品表征

全局图的attetion计算如下:
在这里插入图片描述  其中,wij代表i之间j的权重,j是与i相邻的点。s= 1 ∣ S ∣ ∑ v i ∈ S h v i \frac{1}{\mid S \mid}\sum\limits_{v_i\in S}^{}h_{v_{ \scriptsize i}} S1viShvi,代表一个会话中所有物品特征的均值。该attention机制考虑了临界点与整个会话的契合程度,并根据契合程度和临界点的权重来计算attention

聚合更新计算如下:
在这里插入图片描述将邻接点信息与自身信息结合,再多次重复上述操作,最终得到全局物品表示
在这里插入图片描述在这里插入图片描述

2.2、局部物品表征

局部物品表征使用了很简单的attetion机制:
在这里插入图片描述  通过vi与vj的相似度来计算权重,然后根据权重进行聚合更新操作。由于有自连接边,所以加权汇聚的过程中实际上相当于同时做了信息传播和信息汇聚。

聚合更新计算:在这里插入图片描述最后对全局表征加一层dropout防止过拟合,然后再与局部表征相加得到最终全局与局部相结合的物品表征
              在这里插入图片描述

3、最终预测

GCE-GNN 将每个物品的位置信息也考虑在内,pl-i+1代表位置信息,zi是融合位置信息后的表征结果。
              在这里插入图片描述
不同于SRGNN(将最后一个物品作为最后atteion的标准),GCE-GNN计算整个会话的平均特征,将平均特征作为最后attenion的标准
                  在这里插入图片描述

               在这里插入图片描述
                   在这里插入图片描述

人工智能(AI)最近经历了复兴,在视觉,语言,控制和决策等关键领域取得了重大进展。 部分原因在于廉价数据和廉价计算资源,这些资源符合深度学习的自然优势。 然而,在不同的压力下发展的人类智能的许多定义特征仍然是当前方法无法实现的。 特别是,超越一个人的经验 - 从婴儿期开始人类智能的标志 - 仍然是现代人工智能的一项艰巨挑战。 以下是部分立场文件,部分审查和部分统一。我们认为组合概括必须是AI实现类似人类能力的首要任务,结构化表示和计算是实现这一目标的关键。就像生物学利用自然和培养合作一样,我们拒绝“手工工程”和“端到端”学习之间的错误选择,而是倡导一种从其互补优势中获益的方法。我们探索如何在深度学习架构中使用关系归纳偏差来促进对实体,关系和组成它们的规则的学习。我们为AI工具包提供了一个新的构建模块,具有强大的关系归纳偏差 - 图形网络 - 它概括和扩展了在图形上运行的神经网络的各种方法,并为操纵结构化知识和生成结构化行为提供了直接的界面。我们讨论图网络如何支持关系推理和组合泛化,为更复杂,可解释和灵活的推理模式奠定基础。作为本文的配套文件,我们还发布了一个用于构建图形网络的开源软件库,并演示了如何在实践中使用它们。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值