论文阅读《Knowledge-enhanced Multi-View Graph Neural Networks for Session-based Recommendation》

本文提出了一种利用知识图谱和多视图模型的会话推荐方法,通过解决现有模型的信息冗余问题,捕捉跨会话关系,提升推荐效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文概况

本文是2023年sigir的一篇知识图谱会话推荐论文,利用知识图谱取代传统的全局图,并设计三种视图辅助推荐。

Introduction

作者认为当前会话推荐模型存在以下缺陷:(1)当前模型使用全局图来构建跨会话关系,但全局图中的邻接边基本都在局部图中出现,导致信息冗余,全局图没有挖掘到真正的跨会话信息。(2)当前模型仅分析项目上下文关系,忽略了 同一会话中的项目通常具有特征共性。
针对上述问题,作者提出KMVG模型:(1)利用知识图谱提取全局项目-项目关系,可以有效地缓解数据稀疏性和冗余挖掘问题(2) 我们提取序列模式和特征模式,以细粒度的方式表示局部项目-项目关系。
在这里插入图片描述在这里插入图片描述

Method

在这里插入图片描述

A.Multi-View Graph Models

Knowledge-View Graph:利用知识图谱构建三元组(h,r,t),每个(h,r,t)意味着从h到t存在关系r
在这里插入图片描述
Session-View Graph: 会话视图中存在四种类型的边 r i n , r o u t , r i n − o u t , r s e l f . r_{in},r_{out},r_{in-out},r_{self}. rin,rout,rinout,rself.在会话中相邻的物品在图中也邻接。
Pairwise-View Graph: 由一个会话中所有物品组成的全连接图。

B.Knowledge-View Representation Learning

模型利用Knowledge-View Representation Learning层进行全局信息的捕获。
利用知识图谱图注意力卷积,让t的信息通过各种关系r进行传播,增强实体h的语义
e N h = ∑ ( h , r , t ) ∈ N h ζ ( h , r , t ) ⋅ e t , (1) \mathbf{e}_{N_{h}}=\sum_{(h,r,t)\in\mathcal{N}_{h}}\zeta(h,r,t)\cdot\mathbf{e}_{t},\tag{1} eNh=(h,r,t)Nhζ(h,r,t)et,(1)
其中,注意力 ζ ( h , r , t ) \zeta(h,r,t) ζ(h,r,t)决定从t中传播多少信息到h, ζ ( h , r , t ) \zeta(h,r,t) ζ(h,r,t)计算如下:
ζ ( h , r , t ) = e x p ( s ( h , r , t ) ) ∑ ( h , r ′ , t ′ ) ∈ N h e x p ( s ( h , r ′ , t ′ ) ) , s ( h , r , t ) = ( W r e t ) ⊤ t a n h ( W r e h + e r ) , (2) \begin{aligned}\zeta(h,r,t)&=\frac{exp(s(h,r,t))}{\sum_{(h,r',t')\in\mathcal{N}_h}exp(s(h,r',t'))},\\s(h,r,t)&=(\mathbf{W}_r\mathbf{e}_t)^\top tanh(\mathbf{W}_r\mathbf{e}_h+\mathbf{e}_r),\end{aligned}\tag{2} ζ(h,r,t)s(h,r,t)=(h,r,t)Nhexp(s(h,r,t))exp(s(h,r,t)),=(Wret)tanh(Wreh+er),(2)
其中 e r \mathbf{e}_r er是可训练参数。
我们将 e N h \mathbf{e}_{N_{h}} eNh与输入embedding结合,得到物品h在该层的特征表示
e h ( 1 ) = f 1 ( e h , e N h ) = σ ( W 1 ( e h ⊕ e N h ) ) , (3) \mathbf{e}_{h}^{(1)}=f_{1}(\mathbf{e}_{h},\mathbf{e}_{N_{h}})=\sigma(\mathbf{W}_{1}(\mathbf{e}_{h}\oplus\mathbf{e}_{N_{h}})),\tag{3} eh(1)=f1(eh,eNh)=σ(W1(eheNh)),(3)
形式上,在第l层物品h的特征表示为:
e h ( l ) = f 1 ( e h ( l − 1 ) , e N h ( l − 1 ) ) . (4) \mathbf{e}_{h}^{(l)}=f_{1}(\mathbf{e}_{h}^{(l-1)},\mathbf{e}_{N_{h}}^{(l-1)}).\tag{4} eh(l)=f1(eh(l1),eNh(l1)).(4)

C.Session-View Representation Learning

模型利用Session-View Representation Learning层进行会话内上下文关系的捕获。
在会话图上进行图注意力卷积
e v i s s = ∑ ( v i s , r i j , v j s ) ∈ N v i s ξ ( v i s , r i j , v j s ) ⋅ e v j s , (5) \mathbf{e}_{v_{i}^{s}}^{s}=\sum_{(v_{i}^{s},r_{ij},v_{j}^{s})\in\mathcal{N}_{v_{i}^{s}}}\xi(v_{i}^{s},r_{ij},v_{j}^{s})\cdot\mathbf{e}_{v_{j}^{s}},\tag{5} eviss=(vis,rij,vjs)Nvisξ(vis,rij,vjs)evjs,(5)
其中 ξ ( v i s , r i j , v j s ) \xi(v_{i}^{s},r_{ij},v_{j}^{s}) ξ(vis,rij,vjs)计算如下:
ξ ( v i s , r i j , v j s ) = e x p ( a r i j ⊤ σ ( e v i s ⊗ e v j s ) ) ∑ ( v i s , r i j , v k s ) ∈ N v i s exp ⁡ ( a r i j T σ ( e v i s ⊗ e v k s ) ) , (6) \xi(v_i^s,r_{ij},v_j^s)=\frac{exp(\mathbf{a}_{r_{ij}}^{\top}\sigma(\mathbf{e}_{v_i^s}\otimes\mathbf{e}_{v_j^s}))}{\sum_{(v_i^s,r_{ij},v_k^s)\in\mathcal{N}_{v_i^s}}\exp(\mathbf{a}_{r_{ij}}^{\mathsf{T}}\sigma(\mathbf{e}_{v_i^s}\otimes\mathbf{e}_{v_k^s}))},\tag{6} ξ(vis,rij,vjs)=(vis,rij,vks)Nvisexp(arijTσ(evisevks))exp(arijσ(evisevjs)),(6)
其中, a r i j \mathbf{a}_{r_{ij}} arij代表不同类型边的权重。
我们分别将物品的初始表征和物品用知识图谱卷积得到的表征作为(5)(6)的输入,最终得到 e v i s s i , e v i s s k \mathbf{e}_{v_i^s}^{si},\mathbf{e}_{v_i^s}^{sk} evissi,evissk,分别蕴含上下文信息、全局语义信息。
我们将携带两种信息的表征相结合,再引入位置向量,强调会话中物品位置的重要性区别。
e v i s s v = f 2 ( e v i s s i , e v i s s k ) , (7) \mathbf{e}_{v_i^s}^{sv}=f_2(\mathbf{e}_{v_i^s}^{si},\mathbf{e}_{v_i^s}^{sk}),\tag{7} evissv=f2(evissi,evissk),(7)
h v i s = t a n h ( W 2 [ e v i s s v ; p l − i + 1 ] + b 1 ) . (8) \mathbf{h}_{v_{i}^{s}}=tanh(\mathbf{W}_{2}[\mathbf{e}_{v_{i}^{s}}^{sv};\mathbf{p}_{l-i+1}]+\mathbf{b}_{1}).\tag{8} hvis=tanh(W2[evissv;pli+1]+b1).(8)

D.Pairwise-View Representation Learning

模型利用Pairwise-View Representation Learning层进行项目特征相关性的捕获。
使用成对的项目聚合器,通过计算交叉特征来获得项目的特征共性
z i j = e v i s ⊗ e v j s , (9) \mathbf{z}_{ij}=\mathbf{e}_{v_{i}^{s}}\otimes\mathbf{e}_{v_{j}^{s}},\tag{9} zij=evisevjs,(9)
因此,一个会话中的相关性计算如下:
s p a i r = L e a k y R e L U ( 1 l ∑ i = 1 l ∑ j = i + 1 l z i j ) , (10) \mathbf{s}_{pair}=LeakyReLU(\frac{1}{l}\sum_{i=1}^{l}\sum_{j=i+1}^{l}\mathbf{z}_{ij}),\tag{10} spair=LeakyReLU(l1i=1lj=i+1lzij),(10)
s p a i r = L e a k y R e L U ( 1 l ∑ i = 1 l ∑ j = i + 1 l e v i s ⊗ e v j s ) = L e a k y R e L U ( 1 2 l ( ∑ i = 1 l ∑ j = 1 l e v i s ⊗ e v j s − ∑ i = 1 l e v i s ⊗ e v i s ) ) = L e a k y R e L U ( 1 2 l ( ( ∑ i = 1 l e v i s ) 2 − ∑ i = 1 l ( e v i s ) 2 ) ) . (11) \begin{aligned} s_{pair}& =LeakyReLU\left(\frac{1}{l}\sum_{i=1}^{l}\sum_{j=i+1}^{l}\mathbf{e}_{v_{i}}^{s}\otimes\mathbf{e}_{v_{j}}^{s}\right) \\ &=LeakyReLU\left(\frac{1}{2l}\left(\sum_{i=1}^{l}\sum_{j=1}^{l}\mathbf{e}_{v_{i}}^{s}\otimes\mathbf{e}_{v_{j}}^{s}-\sum_{i=1}^{l}\mathbf{e}_{v_{i}}^{s}\otimes\mathbf{e}_{v_{i}}^{s}\right)\right) \\ &=LeakyReLU\left(\frac{1}{2l}\left(\left(\sum_{i=1}^{l}\mathbf{e}_{v_{i}}^{s}\right)^{2}-\sum_{i=1}^{l}\left(\mathbf{e}_{v_{i}}^{s}\right)^{2}\right)\right) \end{aligned}.\tag{11} spair=LeakyReLU(l1i=1lj=i+1levisevjs)=LeakyReLU(2l1(i=1lj=1levisevjsi=1levisevis))=LeakyReLU 2l1 (i=1levis)2i=1l(evis)2 .(11)

E.Ensemble and Prediction

首先通过注意力机制融合来自会话视图的项目表示,
s s e s s = ∑ i = 1 l β i ⋅ e v i s s v , (12) \mathbf{s}_{sess}=\sum_{i=1}^{l}\beta_{i}\cdot\mathbf{e}_{v_{i}^{s}}^{sv},\tag{12} ssess=i=1lβievissv,(12)
其中注意力权重计算如下:
β i = q ⊤ σ ( W 3 h v i s + W 4 s ‾ s v + b 2 ) , (13) \beta_{i}=\mathbf{q}^{\top}\sigma(\mathbf{W}_{3}\mathbf{h}_{v_{i}^{s}}+\mathbf{W}_{4}\overline{s}^{sv}+\mathbf{b}_{2}),\tag{13} βi=qσ(W3hvis+W4ssv+b2),(13)
其中, s ‾ s v = 1 l ∑ i = 1 l e v i s s . \overline{s}^{sv}=\frac{1}{l}\sum_{i=1}^{l}\mathbf{e}_{v_{i}^{s}}^{s}. ssv=l1i=1leviss.
将得到的会话视图与成对视图表征结合:
s f i n a l = f 3 ( s s e s s , s p a i r ) , (14) s_{final}=f_{3}(s_{sess},s_{pair}),\tag{14} sfinal=f3(ssess,spair),(14)
最终,计算相似度得分
y ^ i = e x p ( s f i n a l ⊤ e v i ) ∑ v j ∈ V e x p ( s f i n a l ⊤ e v j ) , (15) \hat{y}_{i}=\frac{exp(s_{final}^{\top}\mathbf{e}_{v_{i}})}{\sum_{v_{j}\in\mathcal{V}}exp(\mathbf{s}_{final}^{\top}\mathbf{e}_{v_{j}})},\tag{15} y^i=vjVexp(sfinalevj)exp(sfinalevi),(15)
损失函数如下:
L = − ∑ i = 1 n y i l o g ( y i ^ ) + ( 1 − y i ) l o g ( 1 − y i ^ ) . (16) \mathcal{L}=-\sum_{i=1}^{n}y_{i}log(\hat{y_{i}})+(1-y_{i})log(1-\hat{y_{i}}).\tag{16} L=i=1nyilog(yi^)+(1yi)log(1yi^).(16)

实验结果

在这里插入图片描述

总结

KMVG指出主流算法中利用全局图会出现的信息冗余问题,但使用知识图谱作为解决方案并没有利用跨会话信息,可以在这篇文章的思想上针对全局图进行改进,去掉局部图中已经包含的信息,让全局图捕获全新的跨会话信息。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值