WhenFederated Recommendation Meets Cold-Start Problem: Separating Item Attributes and User Interact

论文概况

本文是2024 WWW的一篇联邦推荐论文,提出了 IFedNCF,旨在解决联邦推荐中的冷启动问题

Introduction

  • 提出第一个针对冷启动问题的联邦推荐方法
  • 适用于任何已有的联邦推荐系统

Method

在这里插入图片描述

A. 热物品学习

假设客户端仅有物品编号,服务器有物品属性信息,我们通过客户端上传的物品embedding以及服务器的属性来训练属性到物品embedding的神经网络,具体的:
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
并且在本地先进行用户embedding与评分预测模块的更新
再进行物品embedding的更新
在这里插入图片描述

B. 冷物品推荐

新加入客户端的冷物品,由服务器给予冷物品的属性进行embedding计算,再将计算出的初始embedding下发到客户端。

C.结果

在这里插入图片描述

总结

在联邦推荐中解决冷启动问题的开创性方法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值