论文概况
本文是2024 WWW的一篇联邦推荐论文,提出了 IFedNCF,旨在解决联邦推荐中的冷启动问题
Introduction
- 提出第一个针对冷启动问题的联邦推荐方法
- 适用于任何已有的联邦推荐系统
Method
A. 热物品学习
假设客户端仅有物品编号,服务器有物品属性信息,我们通过客户端上传的物品embedding以及服务器的属性来训练属性到物品embedding的神经网络,具体的:
并且在本地先进行用户embedding与评分预测模块的更新
再进行物品embedding的更新
B. 冷物品推荐
新加入客户端的冷物品,由服务器给予冷物品的属性进行embedding计算,再将计算出的初始embedding下发到客户端。
C.结果
总结
在联邦推荐中解决冷启动问题的开创性方法