服务器上用anaconda虚拟环境安装gpu版本tensorflow

本文介绍了如何在服务器上利用Anaconda创建虚拟环境,并详细讲解了安装GPU版TensorFlow所需的CUDA和cuDNN版本对应关系,以及安装步骤,包括查看显卡驱动、选择合适的CUDA版本和TensorFlow-gpu版本,最后通过conda进行安装。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Note:安装GPU版本的tensorflow要求cuda版本和tensorflow版本对应,而cuda运行要求cuda版本与显卡驱动版本对应

基础知识

显卡驱动:需要有驱动才能用显卡

cuda: 是NVIDIA 推出的通用gpu 计算架构。也就是说CUDA只能在NVIDIA的GPU上运行,而且只有当要解决的计算问题是可以大量并行计算的时候才能发挥CUDA的作用

cuDnn: 是深度学习加速库。注意,它跟我们的CUDA没有一一对应的关系,即每一个版本的CUDA可能有好几个版本的cuDNN与之对应,但一般有一个最新版本的cuDNN版本与CUDA对应更好

查看cuda和cudnn版本

cuda: cat /usr/local/cuda/version.txt

cudnn: cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2
在这里插入图片描述
安装步骤

第一步:查看显卡驱动,确定需要安装的cuda对应版本

查看显卡驱动命令: nvidia-smi

在这里插入图片描述
在第一行可以看到驱动版本号为390.48,再根据下面的表格,确定对应的cuda版本为cuda9.1以下(我选择了cuda9.0)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值