Note:安装GPU版本的tensorflow要求cuda版本和tensorflow版本对应,而cuda运行要求cuda版本与显卡驱动版本对应
基础知识
显卡驱动:需要有驱动才能用显卡
cuda: 是NVIDIA 推出的通用gpu 计算架构。也就是说CUDA只能在NVIDIA的GPU上运行,而且只有当要解决的计算问题是可以大量并行计算的时候才能发挥CUDA的作用
cuDnn: 是深度学习加速库。注意,它跟我们的CUDA没有一一对应的关系,即每一个版本的CUDA可能有好几个版本的cuDNN与之对应,但一般有一个最新版本的cuDNN版本与CUDA对应更好
查看cuda和cudnn版本
cuda: cat /usr/local/cuda/version.txt
cudnn: cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2
安装步骤
第一步:查看显卡驱动,确定需要安装的cuda对应版本
查看显卡驱动命令: nvidia-smi
在第一行可以看到驱动版本号为390.48,再根据下面的表格,确定对应的cuda版本为cuda9.1以下(我选择了cuda9.0)