dfs递归过程代码优化

本文讨论了在矩阵中使用深度优先搜索(DFS)时如何优化搜索过程及处理边界问题,通过引入逻辑或运算及前置边界检查,显著提高了搜索效率。以LeetCode题目WordSearch为例,详细阐述了解决方案并提供了实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在一个图或者矩阵中,一个点往往有很多邻接点,在dfs搜索的过程中,如果有一个邻接点搜索成功,剩下的邻接定点就不需要搜索了。

对矩阵中的DFS来说,还需要处理边界问题,保持搜素的点在矩阵内部,不会出现访问越界的情况,对此优化有两点:


1、在搜索多个邻接定点时,使用“||或”运算,有个搜索成功即返回成功。

2、将边界检查放在DFS函数的头部,如果越界,返回搜索失败,不需要进行递归。


以leetcode题目wordsearch为例,原题为:

Given a 2D board and a word, find if the word exists in the grid.

The word can be constructed from letters of sequentially adjacent cell, where "adjacent" cells are those horizontally or vertically neighboring. The same letter cell may not be used more than once.

For example,
Given board =

[
  ["ABCE"],
  ["SFCS"],
  ["ADEE"]
]
word = "ABCCED", -> returnstrue,
word = "SEE", -> returnstrue,
word = "ABCB", -> returnsfalse.

思路:

深度遍历,设置visit数组来标记已经访问过的位置,在访问失败回溯时,重新将访问过的位置设置未访问,访问失败了,就当没放问

代码如下:

public class Solution {
	
	
	//k表示要找的word中的第k个字符,从i,j的周边开始找,i,j是第k个字符
	public boolean dfs(char[][] board,String word,int i,int j,int k,boolean[][] visit){
		
		if(k==word.length()){	//成功搜索
			return true;
		}
		
		/**优化1*/
		if(i<0 || i>=board.length || j<0 || j>=board[0].length  //越界,			        搜索失败
			  || board[i][j] != word.charAt(k)              //第i,j个字符不等于word的第k个字符,	搜索失败
			  || visit[i][j]){			        //第i,j个字符已经被访问过了,	        搜索失败
			return false;
		}
		
		visit[i][j] = true;			//将当前节点记为已经访问
		
		/**优化2*/
		if(dfs(board,word,i-1,j,k+1,visit)		//从上下左右四个方向遍历,只要有一个成功便返回
				|| dfs(board,word,i+1,j,k+1,visit)
				|| dfs(board,word,i,j-1,k+1,visit)
				|| dfs(board,word,i,j+1,k+1,visit)){
			return true;
		}
		
		visit[i][j] = false;	//这个很重要,在回溯时,把访问标记记为false
		return false;
	}
	
    public boolean exist(char[][] board, String word) {
        if(board.length==0 || board[0].length==0 || word.length()==0){
        	return false;
        }
        
        int row = board.length;
        int col = board[0].length;
        
        boolean[][] visit = new boolean[row][col];	//访问标记数组
        for(int i=0;i<row;i++){
        	for(int j=0;j<col;j++){
        		if(board[i][j]==word.charAt(0) && dfs(board,word,i,j,0,visit)){
        			return true;
        		}
        	}
        }
    	return false;
    }
	
    public static void main(String[] args) {
    	Solution s = new Solution();
    	char[][] a = {{'A','B','C','E'},
    		      {'S','F','C','S'},
    		      {'A','D','E','E'}};
    	
    	System.out.println(s.exist(a, "ABCCED"));
    	System.out.println(s.exist(a, "SEE"));
    	System.out.println(s.exist(a, "ABCB"));
	}
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值