Python滞后相关系数(Lagged correlation)代码分享,气象相关

本文分享了在气象研究中使用Python计算滞后相关系数的方法,适用于南海海温等相关数据分析。涉及的库包括catorpy、numpy和scipy。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近研究南海海温时用到了这个,向大家进行一个代码分享

需要:catorpy,numpy,scipy

import matplotlib.pyplot as plt
import numpy as np
from scipy.stats import pearsonr

def LCC(data1, data2, n, path):
#   作滞后相关,n>0时,data2先于data1发生
#   如data2为海温,data1为降水,n为1——>LCC为海温关于当年降水和来年降水的相关
    a = n * 2 + 1
    b = len(data1)
    x = np.arange(-n, n + 1, 1)
    r = np.zeros((a))
    p = np.zeros((a))

    for i in range(a):
        if i < (n):
            r[n - i - 1], p[n - i - 1] = pearsonr(data1[:(b - i - 1)], data2[i + 1:])
        else :
            r[i], p[i] = pearsonr(data1[x[i]:], data2[:b - x[i]])
#   画图
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.axhline(0,linewidth=3, color='k')   #零刻度线
    cs = ax.bar(x[n:], r[n:], align='center',edgecolor='k',linewidth=3,color = 'white')
#      
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值