取数游戏【dp+博弈】

本文介绍了如何利用动态规划和博弈论来解决一个双人取数游戏的问题。游戏规则是玩家轮流从两端取数,取完数后得分,最终得分高者获胜。通过计算区间最优策略,先手和后手的最优得分可以确定。样例展示了计算过程,代码实现了从单元素区间到全区间最优解的计算方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

取数游戏【dp+博弈】

有如下一个双人游戏:N个正整数的序列放在一个游戏平台上,两人轮流从序列的两端取数,每次有数字被一个玩家取走后,这个数字被从序列中去掉并累加到取走该数的玩家的得分中,当数取尽时,游戏结束。以最终得分多者为胜。

编一个执行最优策略的程序,最优策略就是使自己能得到在当前情况下最大的可能的总分的策略。你的程序要始终为两位玩家执行最优策略。

输入第1行包括一个正整数N(2≤N≤100), 表示序列中正整数的个数。输入第2行包含用空格分隔的N个正整数(1≤所有正整数≤200)。

只有一行,用空格分隔的两个整数: 依次为先取数玩家和后取数玩家的最终得分。

样例输入

6
4 7 2 9 5 2

样例输出

18 11

以区间最优从而选出全部最优。当区间只有1个时,先手选取获得最优,两个便是较大的最优,同时也是区间和减去上一个状态中较小的,因为想要获得较大的数那么就要把较小的留给对手,gain[i][j] 是在[i,j] 中区间可取得的最大的值,如果要求gain[i][j+1]的最优便是将gain[i-1][j]和gain[i][j+1]中较小的给对手,这样先手便能得到最优值。
接下来给出AC代码,该代码由初始状态,计算第[j,j+i]区间的值,及由只有一个元素的区间得出有两个元素区间的最优,然后的出含有三个元素的最优…直到得出[1,n]区间的最优,java代码如下:

import java.util.Scanner;
public class Main{
      
    public static void main(String[] args) {
      
		Scann
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值