Stanford机器学习课程笔记2-高斯判别分析与朴素贝叶斯

转载请注明出处:  http://xiahouzuoxin.github.io/notes/

判别学习算法和生成学习算法

  • 判别学习算法:直接学习p(y|x),即直接通过输入特征空间x去确定目标类型{0,1},比如Logistic Regression和Linear Regression以及感知学习算法都是判别学习算法。

  • 生成学习算法:不直接对p(y|x)建模,而是通过对p(x|y)和p(y)建模。比如,y表示目标是dog(0)还是elephant(1),则p(x|y=1)表示大象的特征分布,p(x|y=0)表示狗的特征分布。下面的高斯判别分析和朴素贝叶斯算法都是生成学习算法。

生成学习算法通过学习p(y|x)和p(y),一般都要通过贝叶斯公式转化为p(x|y)来进行预测。

最大释然估计也可以转换为联合概率的最值。

高斯判别分析(Gaussian Discriminant Analysis)

对于输入特征x是连续值的随机变量,使用高斯判别分析模型非常有效,它对p(x|y)使用高斯分布建模。

,其中p为先验概率

依据前面对生成学习算法的分析,求联合概率的最大似然估计,

求得4个参数值及其直观解释为:

直观含义:类目1的样本数占总样本数的比例,即先验概率,类目0的先验概率刚好是 1 − ϕ

直观含义:类目0每个维度特征的均值,结果是nx1的向量,n为特征维度

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值