转载请注明出处:
http://xiahouzuoxin.github.io/notes/
判别学习算法和生成学习算法
判别学习算法:直接学习p(y|x),即直接通过输入特征空间x去确定目标类型{0,1},比如Logistic Regression和Linear Regression以及感知学习算法都是判别学习算法。
生成学习算法:不直接对p(y|x)建模,而是通过对p(x|y)和p(y)建模。比如,y表示目标是dog(0)还是elephant(1),则p(x|y=1)表示大象的特征分布,p(x|y=0)表示狗的特征分布。下面的高斯判别分析和朴素贝叶斯算法都是生成学习算法。
生成学习算法通过学习p(y|x)和p(y),一般都要通过贝叶斯公式转化为p(x|y)来进行预测。
最大释然估计也可以转换为联合概率的最值。
高斯判别分析(Gaussian Discriminant Analysis)
对于输入特征x是连续值的随机变量,使用高斯判别分析模型非常有效,它对p(x|y)使用高斯分布建模。
,其中p为先验概率
依据前面对生成学习算法的分析,求联合概率的最大似然估计,
求得4个参数值及其直观解释为:
直观含义:类目1的样本数占总样本数的比例,即先验概率,类目0的先验概率刚好是 1 − ϕ
直观含义:类目0每个维度特征的均值,结果是nx1的向量,n为特征维度