会议:CVPR 2019
标题:《Searching for MobileNetV3》
论文链接: https://arxiv.org/abs/1905.02244?context=cs
代码:感谢github上大佬们开源,开源代码整理如下:
(1)PyTorch实现1:https://github.com/xiaolai-sqlai/mobilenetv3
(2)PyTorch实现2:https://github.com/kuan-wang/pytorch-mobilenet-v3
(3)PyTorch实现3:https://github.com/leaderj1001/MobileNetV3-Pytorch
(4)Caffe实现:https://github.com/jixing0415/caffe-mobilenet-v3
(5)TensorFLow实现:https://github.com/Bisonai/mobilenetv3-tensorflow
本文仅作为个人学习笔记分享,图片来自于论文,如有侵权,请联系删除。
轻量级网络
从SqueezeNet开始模型的参数量就不断下降,为了进一步减少模型的实际操作数(MAdds),MobileNetV1利用了深度可分离卷积提高了计算效率,而MobileNetV2则加入了线性bottlenecks和反转残差模块构成了高效的基本模块。随后的ShuffleNet充分利用了组卷积和通道shuffle进一步提高模型效率。CondenseNet则学习保留有效的dense连接在保持精度的同时降低,ShiftNet则利用shift操作和逐点卷积代替了昂贵的空间卷积。
图1分别是MobileNetV3两个版本与其他轻量级网络在Pixel 1 手机上的计算延迟与ImageNet分类精度的比较。可见MobileNetV3 取得了显著的比较优势
图2是ImageNet分类精度、MAdd计算量、模型大小的比较,MobileNetV3依然是最优秀的。
高效的网络构建模块
MobileNetV3 是神经架构搜索得到的模型,其内部使用的模块继承自:
1. MobileNetV1 模型引入的深度可分离卷积(depthwise separable convolutions);
2. MobileNetV2 模型引入的具有线性瓶颈的倒残差结构(the inverted residual with linear bottleneck);
3. MnasNet 模型引入的基于squeeze and excitation结构的轻量级注意力模型。
这些被证明行之有效的用于移动端网络设计的模块是搭建MobileNetV3的积木。
互补搜索
在网络结构搜索中,作者结合两种技术:资源受限的NAS(platform-aware NAS)与NetAdapt,前者用于在计算和参数量受限的前提下搜索网络的各个模块,所以称之为模块级的搜索(Block-wise Search) ,后者用于对各个模块确定之后网络层的微调。
这两项技术分别来自论文:
M. Tan, B. Chen, R. Pang, V. Vasudevan, and Q. V. Le. Mnasnet: Platform-aware neural architecture search for mobile. CoRR, abs/1807.11626, 2018.
T. Yang, A. G. Howard, B. Chen, X. Zhang, A. Go, M. Sandler, V. Sze, and H. Adam. Netadapt: Platform-aware neural network adaptation for mobile applications. In ECCV, 2018
前者相当于整体结构搜索,后者相当于局部搜索,两者互为补充。
网络改进
由于MobileNetV2 网络端部最后阶段的计算量很大,所以在MobileNetV3中重新设计了这一部分,这样做并不会造成精度损失。
非线性
作者发现一种新出的激活函数swish x 能有效改进网络精度:
但是swish计算量太大了。
于是作者对这个函数进行了数值近似
结果证明如下图,效果明显较好。
MobileNetV3-Large网络结构
使用上述搜索机制和网络改进,最终谷歌得到的模型是这样(分别是MobileNetV3-Large和MobileNetV3-Small):
MobileNetV3-Small网络结构
谷歌没有公布用了多少时间搜索训练。
目前谷歌还没有公布MobileNetV3的预训练模型,不过读者可以按照上述结构构建网络在ImageNet上训练得到权重
实验结果
作者使用上述网络在分类、目标检测、语义分割三个任务中验证了MobileNetV3的优势:在计算量小、参数少的前提下,相比其他轻量级网络,依然在在三个任务重取得了最好的成绩。
下图是ImageNet分类Top-1精度、计算量、参数量及在Pixel系列手机实验的结果:
MobileNetV3 的两个版本和 MobileNetV2的性能比较