softmax回归

本文介绍了如何在MXNet中使用两种方法实现Softmax回归:1) 纯粹的mxnet实现,依赖于d2lzh包;2) 使用Gluon接口进行实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

1.纯粹的mxnet实现

import d2lzh as d2l
from mxnet import autograd,nd

#读取数据集
batch_size=256
train_iter,test_iter=d2l.load_data_fashion_mnist(batch_size)

num_inputs=28*28
num_outputs=10

#初始化模型参数
W=nd.random.normal(scale=0.01,shape=(num_inputs,num_outputs))
b=nd.zeros(num_outputs)
W.attach_grad()
b.attach_grad()

#softmax运算
def softmax(X):
    X_exp=X.exp()
    #keepdims保留行和列两个维度,axis=1同一行元素求和
    partition=X_exp.sum(axis=1,keepdims=True)
    return X_exp/partition

#定义模型
def net(X):
    return softmax(nd.dot(X.reshape((-1,num_inputs)),W)+b)

#定义损失函数
def cross_entropy(y_hat,y):
    return -nd.pick(y_hat,y).log()

#计算准确率
def accuracy(y_hat,y):
    return (y_hat.argmax(axis=1)==y.astype('float32')).mean().asscalar()

#训练模型
num_epochs,lr=5,0.1

d2l.train_ch3(net,train_iter,test_iter,cross_entropy,num_epochs,batch_size,[W,b],lr)

#预测
for X,y in
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值