直击高频编程考点:动态规划经典算法题总结

目录

一、动态规划总结

(一)基本理解

(二)应用分析

二、相关高频笔试题目练习

(一)最大子序和(Maximum Subarray)

(二)最长上升子序列(Longest Increasing Subsequence)

(三)最长公共子序列(Longest Common Subsequence)

(四)最大子数组乘积(Maximum Product Subarray)

(五)分割整数的最大乘积(Integer Break)

(六)最长有效括号(Longest Valid Parentheses)

(七)不同路径(Unique Paths)

(八)最小路径和(Minimum Path Sum)

(九)最大矩形(Maximal Rectangle)

(十)0-1背包问题(0/1 Knapsack Problem)

(十一)编辑距离(Edit Distance)

(十二)单词拆分(Word Break)

(十三)单词拆分 II(Word Break II)

(十四)单词拆分 III(Palindrome Partitioning III)

(十五)爬楼梯(Climbing Stairs)

(十六)打家劫舍(House Robber)

(十七)强盗抢劫环形街区(House Robber II)

(十八)股票买卖问题(Best Time to Buy and Sell Stock)

(十九)最佳买卖股票时机含冷冻期(Best Time to Buy and Sell Stock with Cooldown)

(二十)找零钱的最少硬币数(Coin Change)

(二十一)从起点到终点的最小路径数(Unique Paths)


干货分享,感谢您的阅读!

一、动态规划总结

(一)基本理解

动态规划(Dynamic Programming)是一种解决多阶段决策问题的优化方法。它通常用于优化具有重叠子问题结构的问题,并通过存储子问题的解来避免重复计算,从而显著提高算法的效率。

动态规划的核心思想是将原问题分解为若干个子问题,通过解决子问题并存储子问题的解来构建原问题的解。在这个过程中,动态规划利用了子问题的重叠性质,即多个子问题可能共享相同的子问题解。通过存储子问题的解,我们可以避免重复计算,从而减少算法的时间复杂度。

下面是对动态规划思想的总结分析ÿ

评论 1170
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张彦峰ZYF

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值