AirSim 自动驾驶仿真 (9) - 如何在 AirSim 使用雷达

AirSim 支持在汽车上使用雷达进行自动驾驶仿真,包括雷达的启用、配置、服务端可视化及客户端API。雷达设置可通过AirSimSettings json配置,例如调整SensorType和Enabled属性。客户端可以使用API获取雷达数据,数据包括点云坐标和雷达位姿。目前提供Python示例代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

AirSim 自动驾驶仿真 (9) - 如何在 AirSim 使用雷达

针对载具和汽车,AirSim 支持雷达。

可用及其他雷达设定可以通过 AirSimSettings json 配置.
请查看 general sensors 获取通用/共享的传感器设置.

在汽车上使能雷达 Enabling lidar on a vehicle

  • 雷达默认是不可用的。 为了使用雷达, 在 settings json 中设定雷达 SensorType 和 Enabled 属性.
        "Lidar1": {
   
   
             "SensorType": 6,
             "Enabled" : true,
  • 汽车多雷达也可用.

雷达配置 Lidar configuration

目前,下列参数可通过 setting json 来配置.

参数 描述
NumberOfChannels 雷达的激光/通道数目
Range 范围, 米值
PointsPerSecond 每秒捕捉的点数
RotationsPerSecond 每秒旋转角度
HorizontalFOVStart 雷达初始 Horizontal FOV, 角度制
HorizontalFOVEnd 雷达终止 Horizontal FOV, 角度制
VerticalFOVUpper 雷达 Vertical FOV 上限, 角度制
VerticalFOVLower 雷达 Vertical FOV 下限, 角度制
X Y Z 雷达相对于汽车的位置 (NED 坐标系, 米制)
Roll Pitch Yaw 雷达相对于汽车的方向 (角度制, 沿 +X 方向的 yaw-pitch-roll)
DataFrame 输出的数据坐标系 (“VehicleInertialFrame” 或 “SensorLocalFrame”)

例如,

{
   
   
  "SeeDocsAt": "https://github.com/Microsof
### AirSim 中关于车辆自动驾驶使用教程 AirSim 是一个开源的、基于 Unreal Engine 和 Unity 的模拟器,主要用于无人机和自动驾驶汽车的研究与开发。它提供了丰富的 API 和工具,支持车辆控制、传感器仿真以及路径规划等功能[^1]。 在 AirSim 中,车辆自动驾驶使用主要涉及以下几个方面: #### 1. 环境搭建 首先需要下载并安装 AirSim 源代码,并按照官方指南完成环境配置。具体步骤如下: ```bash git clone https://github.com/Microsoft/AirSim.git cd AirSim ./setup.sh ./build.sh ``` 上述命令用于克隆 AirSim 仓库并构建所需的库文件[^1]。 #### 2. 车辆仿真环境设置 AirSim 提供了多种预定义的场景,其中包括专门针对自动驾驶汽车的环境。用户可以通过修改 `settings.json` 文件来配置车辆模型、传感器类型以及其他仿真参数。例如,以下是一个典型的 `settings.json` 配置示例: ```json { "Vehicles": { "Car1": { "VehicleType": "PhysXCar", "AutoCreate": true, "Sensors": { "Lidar1": { "SensorType": 6, "Enabled": true, "NumberOfChannels": 64, "RotationsPerSecond": 10, "PointsPerSecond": 800000, "HorizontalFOV": 360, "VerticalFOV": 40, "Range": 50 } } } } } ``` 此配置定义了一个物理引擎驱动的车辆(`PhysXCar`),并添加了一个激光雷达传感器(`Lidar`)[^4]。 #### 3. Python API 使用 AirSim 提供了强大的 Python API,用于控制车辆行为、获取传感器数据以及执行路径规划任务。以下是一个简单的 Python 脚本示例,展示如何连接到 AirSim 并控制车辆移动: ```python import airsim # 连接到 AirSim 客户端 client = airsim.CarClient() client.confirmConnection() client.enableApiControl(True) # 获取车辆控制权 car_controls = airsim.CarControls() # 设置车辆前进速度 car_controls.throttle = 0.5 car_controls.steering = 0 client.setCarControls(car_controls) # 等待一段时间后停止车辆 import time time.sleep(3) car_controls.throttle = 0 client.setCarControls(car_controls) client.reset() ``` 通过上述代码,可以实现对车辆的基本控制操作,包括加速、转向等[^4]。 #### 4. 自动驾驶算法集成 为了实现更复杂的自动驾驶功能,用户可以将深度学习模型或其他算法集成到 AirSim 中。例如,可以利用 TensorFlow 或 PyTorch 训练一个端到端的自动驾驶模型,并通过 AirSim 的传感器数据进行测试和验证[^2]。 --- ###
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值