YOLOv8 训练自己的数据集教程

目录

一、环境配置

1.1. 安装 Python 和 PyTorch

1.2. 安装 Ultralytics

二、数据集准备

2.1. 数据标注

2.2. 数据集划分

2.3. 创建数据集配置文件

三、模型训练

3.1. 选择预训练模型

3.2. 执行训练命令

四、模型评估与预测

4.1. 模型评估

4.2. 模型预测


一、环境配置

1.1. 安装 Python 和 PyTorch

        确保你的系统中已经安装了 Python,推荐使用 Python 3.7 及以上版本。你可以通过以下命令检查 Python 版本:

python --version

        安装 PyTorch 时,需要根据你的 CUDA 版本选择对应的安装命令。如果你的电脑没有 NVIDIA 显卡或不使用 CUDA 加速,可以安装 CPU 版本。例如,安装 CUDA 11.8 对应的 PyTorch 命令如下:

pip install torch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 --index-url https://download.pytorch.org/whl/cu118

1.2. 安装 Ultralytics

        YOLOv8 是 Ultralytics 公司开源的项目,可以使用以下命令直接通过 pip 安装:

pip install ultralytics

        安装完成后,你可以通过以下命令验证是否安装成功:

yolo --help

        如果安装成功,会输出 YOLOv8 的相关命令帮助信息。

二、数据集准备

2.1. 数据标注

        使用标注工具(如 LabelImg、RectLabel 等)对自己的数据集进行标注。标注完成后,将数据整理成 YOLOv8 所需的格式,即每个图像对应一个同名的 txt 标注文件,txt 文件中每一行代表一个目标,格式为:类别索引 x_center y_center width height。其中,类别索引是从 0 开始的整数,代表目标的类别;x_center、y_center、width、height是目标框的中心坐标和宽高,数值均为归一化到 [0, 1] 之间的值。

2.2. 数据集划分

        将整理好的数据集划分为训练集、验证集和测试集。一般情况下,按照 8:1:1 的比例进行划分。可以使用 Python 脚本进行自动划分,以下是一个简单的示例:

import os

import random

import shutil
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大雨淅淅

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值