目录
一、环境配置
1.1. 安装 Python 和 PyTorch
确保你的系统中已经安装了 Python,推荐使用 Python 3.7 及以上版本。你可以通过以下命令检查 Python 版本:
python --version
安装 PyTorch 时,需要根据你的 CUDA 版本选择对应的安装命令。如果你的电脑没有 NVIDIA 显卡或不使用 CUDA 加速,可以安装 CPU 版本。例如,安装 CUDA 11.8 对应的 PyTorch 命令如下:
pip install torch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 --index-url https://download.pytorch.org/whl/cu118
1.2. 安装 Ultralytics
YOLOv8 是 Ultralytics 公司开源的项目,可以使用以下命令直接通过 pip 安装:
pip install ultralytics
安装完成后,你可以通过以下命令验证是否安装成功:
yolo --help
如果安装成功,会输出 YOLOv8 的相关命令帮助信息。
二、数据集准备
2.1. 数据标注
使用标注工具(如 LabelImg、RectLabel 等)对自己的数据集进行标注。标注完成后,将数据整理成 YOLOv8 所需的格式,即每个图像对应一个同名的 txt 标注文件,txt 文件中每一行代表一个目标,格式为:类别索引 x_center y_center width height。其中,类别索引是从 0 开始的整数,代表目标的类别;x_center、y_center、width、height是目标框的中心坐标和宽高,数值均为归一化到 [0, 1] 之间的值。
2.2. 数据集划分
将整理好的数据集划分为训练集、验证集和测试集。一般情况下,按照 8:1:1 的比例进行划分。可以使用 Python 脚本进行自动划分,以下是一个简单的示例:
import os
import random
import shutil