列线图工具_Nomogram

列线图是一种传统分析工具,用于展示自变量和因变量的线性关系,常基于多因素回归分析如逻辑回归或Cox回归。现代数据分析中,SHAP和机器学习库的Featureimportance提供了替代方法。列线图通过Nomogram将模型中的变量关系可视化,涉及数据预处理、特征选择和图形绘制。R语言有现成工具,而Python需自实现,可能用到matplotlib。在处理数值型变量时,可能需要转化为0/1形式以优化影响度表示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

定义

列线图是一种相对传统的分析方法,用于展示自变量和因变量的线性关系,及其特征的重要程度。
现在用SHAP,和机器学习库中的 Feature importance 工具可以实现类似甚至更好效果。不过很多传统的研究领域比较认这种方法。
列线图工具建立在多因素回归分析的基础上,将多个预测指标进行整合,然后采用带有刻度的线段,按照一定的比例绘制在同一平面上,从而用以表达预测模型中各个变量之间的相互关系。

原理

先使用多因素回归(逻辑回归,Cox回归)得出的结果,然后根据回归系数算出Nomogram及画图。

处理流程

主要操作流程如下:

  • 数据处理:
    • 去掉共线性特征(VIF判断多重共线性)
    • 去掉单因素分析中不显著的特征
    • 去掉加了和不加对模型没什么影响的特征(LASSO回归)
  • 做多因素回归
  • 用回归结果做Nomogram,将结果图形化

怎么看图

Points: 第一行是标尺
前几行是特征重要性
Total Points: 所有指标加在一起的得分
Risk:对应风险值

工具

R语言实现方法,详见:Nomogram图不会画?看了这篇,小白也能轻松看懂搞定
Python没有Nomogram相关工具包,需要自己实现,详见:
使用Python,matplotlib绘制Nomogram列线图

注意事项

  • 如果是数值型变量,乘了系数后影响可能比0/1项大很多
  • 可将数据值数据通过分界点转成0/1,分界点的选择方法:可用单变量做回归后代入模型,找到AUC最佳点(Youden index);或者仅用单变量做一个二分类树,让模型自动选分界点。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值