几道之旅
日更一年,静待花开
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
家人们,谁懂啊,dify又报错了:[models] Bad Request Error, 500 Server Error:Internal Server Error for url: http://
本来今天下班,坐在地铁上,一身劳累。一起上班的小兄弟儿,突然甩来一张截图:老大!dify又报错了。没办法,一到家就打开电脑,开始排查。原创 2025-07-25 21:40:37 · 43 阅读 · 0 评论 -
【Dify系列教程重置精品版】第十二章:Dify与selenium实操演示
但此时 Dify还是不能直接调用我们的API,当我们在Dify运行时会报timeout之类的错误。因此,为了让Dify能够访问我们的API,我们需要将本地的API服务暴露到公网上。上一章我们介绍了selenium适合做爬虫,那么好了好了,这一章我们来实际演示一下,如何使用selenium爬取数据然后将其与Dify关联起来。其实道理是一样的,我们只需要将这个爬虫当作我们本地的“图片 ”就可以了。将我们的API填写进HTTP请求中:这里的IP地址要填写自己的。这里我们打开的端口是5000。原创 2025-06-06 23:36:00 · 159 阅读 · 0 评论 -
【Dify系列教程重置精品版】第十一章:Dify与selenium
什么是slenium呢?加单来说:Selenium 是一个自动化操控浏览器的工具,能模拟真人操作网页(点击、输入、翻页等),常用于测试网站或批量抓取网页数据。上一章我们简单介绍了一下RAG,这一章我们讲一下slenium.这三个可以分别试一下,我的电脑阿里云的镜像才下载成功。OK,这章就到这里。第一步:配置slenium。我这里顺利完成配置。原创 2025-05-29 21:50:58 · 312 阅读 · 0 评论 -
【Dify系列教程重置精品版】第十章:Dify与RAG
什么是RAG(Retrieval-Augmented Generation),简单来说就是能够让我们的AI实现基于私有知识的问答、推理。相当于给了AI一本书,让它从书中寻找答案。这样做有利有弊,好处就是能够让我们的AI在特定的场合中做出更加完美的回答。但同时也证明,AI对知识库内容的了解并不深入。这里我有点怀疑是不是AI网上搜到的,问了一个小细节。这里我们直接默认设置,保存并处理。上传我们准备好的文本,点击下一步。上一章我们讲了显示本地的图片。这一章我们讲一下RAG。话不多说,我们开始操作。原创 2025-05-26 22:50:22 · 319 阅读 · 0 评论 -
【Dify系列教程重置精品版】第九章:在Dify对话中显示本地图片(下)
我们的文件夹中会多出来一个文件夹,我们把要显示的图片放到文件夹里。我这里放了一个名字为“111.jpeg”的图片。这一章我们说一下与我们的Dify关联起来,让Dify显示本地图片。上一章讲了如何使用FastAPI以及Uvicorn。还是和上一章一样创建文件,这里我命名为main.py。找到这个地址,我这里假设是 192.168.1.2。说明我们的图片已经可以访问了。我这里也是成功显示。首先,我们还是先准备好要使用的代码。我这里也是成功运行。原创 2025-05-14 20:40:42 · 618 阅读 · 0 评论 -
【Dify系列教程重置精品版】第八章:在Dify对话中显示本地图片(上)使用fastapi编写一个你专属的服务
通过合理配置静态资源服务和优化渲染逻辑,开发者可以在 Dify 中轻松实现高交互性的图文对话流。对于高并发场景,可进一步将图片存储迁移至云服务(如 AWS S3),通过预设签名 URL 提升安全性和扩展性。在 Dify 中显示本地图片,本质是通过静态资源服务暴露本地图片路径,再通过 Markdown/HTML 渲染将其嵌入对话流。这一章我们正式进入如何在Dify中显示本地图片。一、核心原理:静态资源服务与动态渲染。方案二:Dify 内置静态路由。五、扩展场景:动态生成图片。原创 2025-05-10 11:46:25 · 435 阅读 · 2 评论 -
【Dify系列教程重置精品版】第七章:在Dify对话中显示本地图片之FastAPI与Uvicorn
Uvicorn 是运行异步 Python 应用的服务器,与 FastAPI 搭配可最大化性能优势。首先来了一大段报错,看来是我的SSL验证出问题了。这行代码运行时,我是在科学上网的。有可能链接不管用了,没有办法打开了。FastAPI 是构建高效、易维护 API 的首选框架,适合现代 Web 开发。上一章我们讲了如何在Dify中显示网络上的图片,这一章我们讲一下如何显示本地的图片。要做到显示本地图片,我们需要用到FastAPI以及Uvicorn。原来是把我禁了啊,那没事了。原创 2025-05-08 21:43:33 · 383 阅读 · 0 评论 -
【Dify系列教程重置精品版】第六章:在Dify对话中显示图片
上一章我们配置了Ollama.这一章我们讲如何在对话中显示图片。会出现一个对话流,也就是生成回复的流程,点击流程块上的小加号。在网页上找一个,喜欢的图片,复制它的网址,填进URL框内。首先,点开我们Dify的工作室,点击创建空白应用。选择Chatflow,填写图片和描述,点击创建。创建完成后,点击配置。原创 2025-05-06 21:42:24 · 1806 阅读 · 0 评论 -
【Dify系列教程重置精品版】第五章:Dify配置Ollama
所以我在docker container里,访问localhost:11434时,实际无法访问到宿主机的11434,也就没办法调用宿主机上的ollama。安装时我们会发现,ollama是默认安装在C盘的,我们没得选,可如果我C盘已经红了,想安装到D盘如何操作呢?可以使用,但是我这边反应速度是很慢的,没有“月之暗面”反应快。参考上一讲,在上次配置的“小娇娇”对话框,点击右上角,选择我们新配置的deepseek;等待下载结束 ,就可以在本地 使用了,上面图片可以看到,是可以进行正常的交流的。原创 2025-05-01 22:33:20 · 984 阅读 · 0 评论 -
【Dify系列教程重置精品版】第四章:实现Dify的 hello world
进入之后,我们选择模型供应商,这里我选择的是"月之暗面"也就是"KIMI",因为我已经安装了,下面就以“深度求索”为例。这里我已经配置了一个叫小娇娇的AI,但是仅仅名字是小娇娇,与我们的目标还差很远,不过总归是初见端倪。在左侧框中写下我们的要求,全部是中文就可以,我忘记截图了,就用代码中的凑合一下:点击“生成”->“应用”点击右上角我们的账户头像 ,点击“设置”。我再安装后,界面没有反应,重新刷新页面就好了。复制下来,填写到我们Dify的页面中即可。太可爱了,公司有这样的秘书我天天去。原创 2025-04-30 22:21:52 · 416 阅读 · 0 评论 -
【Dify系列教程重置精品版】第三章:Dify平台的本地化部署
既然我们的目的是让老板使用小娇娇点外卖,网页版肯定就不可选了。既然有GitHub,那他一般是开源的,并且可以本地化部署。果不其然又报错了,他说:“连接不到桌面的Docker引擎。儿豁,这里他说,不知我在讲什么,不认识 git。上一章我们聊了部署Dify的前提,这一章终于可以开始本地化部署Dify了。第一步:我们把dify下载到自己的电脑(或者服务器)上。第二步:按照dify的github给出的指令,对dify进行安装。现在假设我的端口是1234,输入下面这两条指令。简单,我们直接下载一个也不麻烦。原创 2025-04-29 10:35:20 · 619 阅读 · 0 评论 -
【Dify系列教程重置精品版】第二章:在Windows上部署Dify
让我们的电脑允许使用Linux系统。有点兴奋是怎么回事?简单来说就是让你的电脑拥有另一个叫做Linux的系统。3.选择“适用于Linux的Windows子系统”与 “虚拟机平台”与“Hyper-V"第1章:安装 wsl (Windows Subsystem for Linux)上一章我们聊了什么是Dify,这一章我们讲一下怎么才能用Dify。好了,我们的环境部署好了,下一章我们正式进入Dify。下载完成后,我们直接一直无脑下一步,安装即可。完成上述步骤,我们就可以开始安装wsl了。我们的虚拟化也是开启的。原创 2025-04-27 22:06:30 · 398 阅读 · 0 评论 -
【Dify系列教程重置精品版】第一章: 相关概念介绍
方式实现大语言模型(LLM)与业务场景的深度结合。Dify作为新一代AI应用开发平台,通过。(完整代码示例及工作流配置详见后续课程)原创 2025-04-25 22:57:54 · 188 阅读 · 0 评论 -
windows下使用vscode+cline插件体验MCP,体验使用AI控制浏览器,踩坑记录(至少让你节省3个小时弯路版)(喂饭级别)
为什么网上天天说MCP,你这儿却一点动静都没有?1️⃣ 人家很早之前就用上了制定标准的Claude desktop,这玩意儿在咱这儿用不了。对策:使用vscode+cline+deepseek(或其它同级别国产大模型deepseek-V3其实有时比R1效果还好)2️⃣ 人家也Claude,但人家能用Cursor,咱太穷了,用不了。对策:使用vscode+cline+deepseek(或其它同级别国产大模型deepseek-V3其实有时比R1效果还好)有人说,我穷到deepseek都用不起怎么办?原创 2025-03-18 23:12:05 · 2546 阅读 · 0 评论 -
dify平台中的模型上下文长度和最大token上限分别是什么意思?对于deepseek-r1模型应该怎么设置?
通过以上配置,可充分发挥DeepSeek-R1在复杂推理任务中的优势,同时避免因参数设置不当导致的响应截断或计算资源过载问题。,决定了模型能“记住”的信息量。例如,若设置为4096,则整个对话(包括用户提问和模型回复)的Token总和不能超过该值,否则超出部分会被截断。,通常需小于等于上下文长度。例如设置为2048时,即使上下文总容量足够,模型生成的内容也不会超过2048个Token。:DeepSeek-R1为纯文本推理模型,若需图片理解能力需选择其他支持Vision的模型(如LLaVA)。原创 2025-03-13 11:03:03 · 4619 阅读 · 0 评论 -
Dify出1.0.1了,bug依旧没修复~Reached maximum retries (3) for URL unique_identifier=langgenius/ollama:0.0.3
👆我们现在的方法是,直接安装新版本,而不是升级。想看升级的,可在评论区留言。因为我是windows环境,所以,第一步还是打开我们的docker desktop。这一步,谁要是网络不通,也可以联系我哈,老规矩,我给你把我这边的直接传到阿里云上。趁着下载的空挡,发现人家又有新模型了,等有时间了再试哈~~在windows上,我们直接在图形化界面操作就好了。再试个更重的模型,也没有那个超时的问题了。稍等片刻后,我们打开dify,查看版本。找到咱刚下载的那个东西,就可以装好了。可以看到,我这个版本还是相当落后的。原创 2025-03-13 02:25:36 · 2433 阅读 · 0 评论 -
探索AI对冲基金:开源自动化交易系统的革新之路
本·格雷厄姆代理(Ben Graham Agent):价值投资之父,只购买有安全边际的隐藏价值股。比尔·阿克曼代理(Bill Ackman Agent):激进投资者,采取大胆立场并推动变革。凯西·伍德代理(Cathie Wood Agent):成长投资女王,相信创新和颠覆的力量。查理·芒格代理(Charlie Munger Agent):沃伦·巴菲特的合作伙伴,只在合理价格购买优秀企业。斯坦利·德鲁肯米勒代理(Stanley Druckenmiller Agent)原创 2025-03-10 17:27:57 · 1021 阅读 · 0 评论 -
我把dify0.15.3传了一份到阿里云,兄弟们再也不必担心网络失败了。
我用的是windows,wsl,dockersdesktop。原创 2025-03-10 10:06:17 · 515 阅读 · 1 评论 -
升级到Dify v1.0.0后,用掉的Dify不要丢,将来还可以这样用,帮你一键回滚到之前的版本。
当你在深夜按下升级按钮的那一刻,命运的齿轮已经开始转动…原创 2025-03-09 08:24:09 · 913 阅读 · 0 评论 -
勇闯dify v1.0.0之设置模型供应商。解决:Reached maximum retries (3) for URL https://marketplace.dify.ai/
朋友们,大家好,今天带大家来勇闯dify v1.0.0。为什么叫勇闯呢?我就这么说吧,本来我昨天就想带大家勇闯v1.0.0的。但是dify的marketplace访问不了。公司的网和手机热点都试了,就是访问不了。我们连个模型都没有,还勇闯个球啊,对吧,就搁置了。今天,我赶紧看看这个marketplace好了没。一看,可以了。赶紧写下这篇博客,帮助同志们走出困境。原创 2025-03-08 08:38:38 · 3495 阅读 · 0 评论 -
dify智能体之不知道有啥用系列之使用chatflow让selenium打开特定网址
在探索Dify的自动化能力时,我们尝试将Selenium浏览器控制功能与ChatFlow结合,实现通过自然语言指令触发网页操作。今天咱实现一个hello world,也就是:使用chatflow让selenium打开特定网址。这也是受人之托写得一篇,因为知道肯定有人看,所以会认真写。还希望各位多多支持哈。原创 2025-03-04 23:06:38 · 698 阅读 · 0 评论 -
如何将hf-mirror.com作为vllm默认的下载源? conda如何移除虚拟环境?conda 如何复制一份虚拟环境?
上回咱说道,如果你没办法访问huggingface.co,则可以把modelscope作为vllm默认的下载源。但如果你非得用你用不了的huggingface.co呢?那你可以考虑将hf-mirror.com作为vllm默认的下载源。这里,hf-mirror.com和huggingface.co的效果是一样的。此设置对所有基于Hugging Face库的下载生效,包括vLLM。建议将此命令写入~/.bashrc或~/.zshrc实现永久生效。执行下载时观察终端输出,若显示域名即配置成功。token。原创 2025-03-03 18:54:11 · 454 阅读 · 0 评论 -
windows下玩转vllm:vllm装好了,怎么使用?
上回说道,通过wsl,vllm是可以跑起来的。便可以启动一个vllm的服务。显示完表示,我们的服务已经启动完了。原创 2025-03-03 11:09:04 · 1212 阅读 · 0 评论 -
windows下玩转vllm:在wsl下安装vllm后续,设置modelscope作为下载源
之前,咱们说了,由于windows不支持直接部署vllm,所以要么采用wsl,要么采用docker。我们目前尝试的是在wsl下进行vllm的安装。原创 2025-03-02 22:48:08 · 1364 阅读 · 0 评论 -
windows下玩转vllm:在wsl下安装vllm
当前,部署通义千问2.5-vl已经是一件箭在弦上,不得不发的事儿了。网上搜了一下,发现还是用vllm用的比较多。于是乎,这就开始尝试部署vllm。但是我们之前说了,vllm是不支持直接在windows上部署的,我们还得搞wsl或者docker。咱今天先尝试使用wsl进行安装哈。原创 2025-03-01 23:49:51 · 2527 阅读 · 1 评论 -
windows下玩转vllm:vllm简介;Windows下不能直接装vllm;会报错ModuleNotFoundError: No module named ‘vllm._C‘
之前做大模型的本地部署,一直都用的ollama。ollama给我的感觉就是,特别方便,几步就可以把大模型部署好。但我看别人都用的vllm,感觉逼格更高一些。所以也就尝试一下。vLLM(Virtual Large Language Model)是一个由加州大学伯克利分校的LMSYS组织开发的开源大语言模型高速推理框架。它旨在提升实时场景下语言模型服务的吞吐量和内存使用效率,特别适合于需要高效处理大量并发请求的应用场景。原创 2025-02-05 19:35:21 · 6573 阅读 · 2 评论 -
ollama竟然可以直接加载huggingface上的gguf格式的模型?还支持通过镜像网站对下载过程加速?
当开发者们还在为模型部署的复杂流程焦头烂额时,Ollama在2024年10月的史诗级更新彻底改写了游戏规则。这个被称为"AI界的Docker"的工具,不仅实现了对HuggingFace Hub上45,000+个GGUF格式模型的一键加载,还贴心地为中国开发者打通了镜像加速通道。本文将深度解析这项技术突破的底层逻辑,并手把手教你玩转这两个革命性功能。SYSTEM "你是一个专业的中文法律顾问"原创 2025-02-27 23:50:05 · 616 阅读 · 0 评论 -
什么是Ollama?什么是GGUF?二者之间有什么关系?
GGUF(GPT-Generated Unified Format)是由llama.cpp创始人Georgi Gerganov提出的二进制文件格式,专为优化大模型的本地加载和推理效率设计。Ollama 是一款开源工具,专注于在本地环境中快速部署和运行大型语言模型(LLM)。它通过极简的命令行操作简化了模型管理流程,支持离线运行、多模型并行、私有化部署等场景。Ollama的模型推理能力基于llama.cpp实现,而llama.cpp的核心功能是加载和运行GGUF格式的模型。原创 2025-02-27 23:45:38 · 253 阅读 · 0 评论 -
诡异报错,uvicorn,playwright,报错:NotImplementedError
再粘一遍文本,方便报错的人,都能找到这一篇,哈哈。咱反正,先这么对付对付,后续再研究真正的原理吧。等我闲下来,我也去看。今天太忙了,先就算了。不过解决方案就是,不要使用reload。不加reload,真滴不会报错。加了reload之后,画风突变。👆诺,大概就是这个鬼样子。更复杂的,咱就不知道了。看起来也是似懂非懂啊。原创 2025-02-26 22:53:57 · 261 阅读 · 0 评论 -
Dify创建自定义工具实践,这里如果不熟悉估计会被折磨得不轻,建议一步一步跟着操作
今天让同事帮我把一些写好的函数,使用fastapi封装成rest服务,再注册到dify的自定义工具。结果都两天了,还没弄完。因为之前搞过这一块,所以不觉得会花这么久。实在无奈,下班了看看是怎么回事。结果发现,这部分要是不熟悉,真的有不少的坑啊。因此,新手建议,按照此教程,一步一步地走,保证你能成功。等你了解了原理,再根据自己的实际情况,一步步注册自己的自定义工具。在dify的界面上,以此选择工具➡创建自定义工具图标可以改,名称也好说,关键是这个schema。原创 2025-02-24 19:41:26 · 2934 阅读 · 5 评论 -
为什么是它?DeepSeek的天时、地利与人和
2025年春节前后,DeepSeek的爆火不仅是一场技术狂欢,更折射出中国AI产业发展的深层逻辑。本文将从三个维度,解析这个现象级AI产品的崛起密码。原创 2025-02-23 21:02:44 · 115 阅读 · 0 评论 -
langflow如何查看中间步骤的输出
上回咱说道,不知道怎么看langflow如何查看中间步骤的输出。后来研究了一下,还是蛮简单的。原创 2025-02-22 19:54:29 · 120 阅读 · 0 评论 -
在LangFlow中集成OpenAI Compatible API类型的大语言模型
LangFlow作为LangChain的可视化开发工具,其最大优势在于无需编写代码即可构建复杂的大模型应用。随着开源生态发展,越来越多的模型服务(如Ollama、硅基流动、DeepSeek、百度千帆等)开始兼容OpenAI API格式。就比如这个OpenAI Compatible API,这不应该是基本操作嘛?从Dify换到这个langflow真的时各种的不适应啊。打开:http://localhost:7860/算了,服了,习惯了就好了。(我用的是千帆的API)错了几百次,终于成功了。原创 2025-02-22 19:18:13 · 724 阅读 · 0 评论 -
LangFlow部署指南:Windows平台实战
LangFlow是基于LangChain构建的开源可视化工具,通过拖拽式界面快速搭建LLM应用原型。作为AI工作流编排工具,它支持实时调试Prompt模板、链式调用和模型组合,是开发者探索大语言模型的理想起点。原创 2025-02-21 19:21:14 · 750 阅读 · 0 评论 -
Langflow与Dify对比:低代码LLM应用开发平台如何选择?
维度Langflow优势Dify优势开发效率快速原型设计全流程自动化灵活性代码级控制标准化模板运维成本需自行部署开箱即用的监控和扩缩容学习曲线需理解LangChain概念无代码配置,产品经理友好建议个人开发者或小团队验证创意,优先使用Langflow。企业需要长期维护的生产级应用,选择Dify更高效。两者可结合使用:用Langflow设计工作流,导出代码后通过Dify部署。原创 2025-02-21 18:47:39 · 1873 阅读 · 0 评论 -
Dify平台接入博查实现deepseek-r1联网搜索,效果展示
关于为本地化部署deepseek-r1增加联网功能,其实是一个很强的刚需。怎奈搜索这种东西,它大概率是要花钱的。不过咱上一篇已经大概分享了,我们可以借助会使用浏览器的智能体,来替我们对关键词进行百度。这也算是曲线救国。但不知道其中是否有法律风险。所以,如果是公司行为,尤其是大公司,建议,要不还是花点儿钱?当时,大模型给推荐的这个:博查。就试用了一番。原创 2025-02-20 19:55:11 · 2087 阅读 · 0 评论 -
兄弟们,我的deepseek终于可以控制浏览器了:Part 1/n,含代码
其实,deepseek控制浏览器咱之前就发过,只不过当时没有想到这么好的标题,哈哈。所依赖的,依然是Browser Use这个项目Browser Use项目官网。原创 2025-02-20 19:35:10 · 1223 阅读 · 0 评论 -
Python编程中什么是decorator?为什么要使用decorator?以及编程实例
装饰器是Python中一种动态增强函数功能的设计模式。它本质上是一个高阶函数,接受一个函数作为输入,返回一个新函数。通过@语法糖,我们可以优雅地为原函数添加新功能,而无需修改其源代码。场景装饰器作用优势对比传统方法日志记录自动记录函数调用信息无需在每个函数内写print权限控制统一校验用户权限业务代码更纯净性能优化缓存结果或限制函数调用频率避免重复计算装饰器就像代码的“魔法插件”,让功能扩展变得灵活且优雅。掌握它,你的Python代码将更简洁、更强大!原创 2025-02-19 18:58:03 · 69 阅读 · 0 评论 -
使用browser use自动打开浏览器页面
通过库,我们可以用简洁的Python代码实现复杂的浏览器自动化操作。该库的异步特性使其特别适合需要高性能并发的场景,相比传统工具(如Selenium)具有更低的资源占用和更高的执行效率。后续可以结合Pytest等测试框架构建完整的自动化测试解决方案。原创 2025-02-18 18:51:56 · 1734 阅读 · 0 评论 -
什么是全零监听?为什么要全零监听?如何修改ollama配置实现全零监听?风险是什么?怎么应对?
全零监听(全链路监听)是指服务监听地址配置为0.0.0.0或,表示允许服务绑定到本机所有网络接口的IP地址上。这种配置会开放所有网卡的端口,使服务能够接收来自任意IP地址的请求。原创 2025-02-18 18:06:25 · 385 阅读 · 0 评论