流量留
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
TPU和NPU有什么区别?
NPU(神经网络处理单元,Neural Processing Unit)是一种专门为加速神经网络计算而设计的处理器,通过模拟人类神经元和突触的工作方式,采用数据流驱动的并行计算架构,能够高效执行大规模的矩阵运算和神经网络推理。NPU在电路层模拟人类神经元和突触,使用深度学习指令集直接处理大规模的神经元和突触,通过单指令流多数据流传输提升数据效率,完成神经元权重更新,从而提高运行效率。它采用脉动阵列架构,可并行执行大量乘积累加操作,能高效处理高维张量数据,擅长处理大规模数据集和复杂模型的训练与推理任务。原创 2025-06-26 19:09:37 · 101 阅读 · 0 评论 -
TTS(Text - to - Speech)和 ASR(Automatic Speech Recognition)是语音技术领域两个非常重要的方向。
例如,在电子书阅读软件中,TTS 技术可以让文字内容被朗读出来,为视力不佳或者在不方便阅读的场景下(如开车时)的用户提供关于其工作原理,早期的 TTS 系统采用简单的规则 - 拼接方法。早期的 TTS 语音听起来可能比较机械,而现代的 TTS 系统通过深度学习等技术,可以生成接近真人发声的语音,包括合适的语调、语速和情感表达。* 在智能语音助手方面,像苹果的 Siri、亚马逊的 Alexa 等,当用户向它们询问问题时,它们会通过 TTS 技术将答案以语音的方式回复给用户。**一、TTS(文字转语音)**原创 2025-06-26 16:58:39 · 34 阅读 · 0 评论 -
DeepSeek、HeyGen 以及 Make 自动化平台的数字人直播系统
**功能优势** :用户通过可视化界面,无需编写代码,就能构建自动化流程。* **应用场景** :可应用于多模态数字内容创作,如为图片生成高质量文本描述,创作故事、诗歌、对话等;* **主要功能** :HeyGen 是一个 AI 数字人视频创作平台,仅需一张照片和语音 / 文字输入,即可生成逼真的 AI 数字人视频,支持多语种视频生成,可实现 7×24 小时工作。* **公司背景** :DeepSeek 成立于 2023 年 7 月,母公司是幻方量化,其团队规模精简,成员多来自国内顶尖高校。原创 2025-06-25 23:50:08 · 404 阅读 · 0 评论 -
以下是对这些 AI 相关工具的介绍:
**功能特点** :由 anlatan 创作的人工智能平台,提供故事续写服务、图片生成服务,其图像生成功能基于 Stable Diffusion 模型,以生成二次元风格图像为主,用户可通过输入关键词、设置参数等生成图片,还支持图片生成图片。原创 2025-06-24 20:49:39 · 34 阅读 · 0 评论 -
Lora 技术或 LoRA(Low-Rank Adaptation,低秩自适应),以下是分别对它们的介绍:
**远距离** :在不同环境下,如城市和农村,其覆盖范围会有所不同。* **低功耗** :LoRa 设备通常具有较低的功耗,这使得它们能够在使用电池供电的情况下长时间运行,适用于那些难以频繁更换电池的物联网设备,如安装在偏远地区的传感器等,降低了设备的维护成本和能源消耗。* **应用场景** :广泛应用于大规模物联网项目,如智慧城市中的停车位监测、垃圾管理,智能农业中的大面积农田监测,环境监测中的空气质量、洪水预警监测,以及智能表计中的水表、电表等。原创 2025-06-24 20:35:40 · 47 阅读 · 0 评论 -
以下是 ComfyUI 的安装部署及接入大模型的详细步骤:
**接入其他模型** :下载所需的大模型文件,将其放置在 ComfyUI 的相应 `models` 文件夹中,或者在 `extra_model_paths.yaml` 文件中正确配置模型路径,然后重启 ComfyUI 以加载新模型。* **使用 ComfyUI-Manager 安装支持大模型的插件** :打开 ComfyUI-Manager,找到支持大模型的插件,如 `comfyui-ollama`,选择安装,在安装过程中按照提示进行操作,完成插件的安装和配置。### 安装 ComfyUI。原创 2025-06-24 20:18:47 · 386 阅读 · 0 评论 -
激活函数是神经网络中的关键组件之一,以下是详细介绍:
**函数形式** :Softmax 函数通常用于多分类问题中的输出层,它的输入是一个实数向量,输出也是一个向量,且各个元素的和为 1,形式上类似于概率分布。* **特点** :能够将多个实数映射到 (0,1) 区间,并且所有输出值的和为 1,这使得它非常适合用于多分类问题中的最后一层,将神经网络的输出转换为各个类别的概率分布。* **函数形式** :Tanh 函数的表达式为 tanh(x)=(e^x - e^(-x))/(e^x + e^(-x)),输出值范围在 (- 1,1) 之间。原创 2025-06-24 19:40:59 · 177 阅读 · 0 评论 -
Dify 的一些实战案例:
创建智能体或工作流应用,根据需求配置任务节点,如文件上传、数据处理、模型调用等节点,并设置触发条件,使其能自动执行任务。使用 Dify 的数据库查询工具,先在应用市场安装数据库连接插件,创建 Chatflow 应用,添加模版转换节点将表结构给大模型,再添加 Agent 节点并配置大模型和数据库连接查询的数据库连接信息,设置提示词后输出执行结果。创建聊天助手应用,选择适合的 LLM 模型作为后台支持,如 GPT 系列模型,配置相应的提示词以限定和约束 AI 的回答,使其更准确相关。### 聊天助手应用。原创 2025-06-16 18:42:38 · 369 阅读 · 0 评论 -
Stable Diffusion 是一款功能强大的开源 AI 图像生成工具,以下是关于它的详细介绍:
**基本原理**:Stable Diffusion 是一种基于深度学习的文本到图像生成模型,采用潜在扩散模型(Latent Diffusion Model)技术,通过训练大量图像和对应文本描述的数据,学会将文本描述映射到图像上,从而能够根据输入用户的文本提示生成相应的图像。- **优势**:开源可定制,用户可根据自身需求进行模型的微调和扩展;- **医疗健康**:生成高精度的医学图像,如人体器官的 3D 模型、病变区域的模拟图像等,辅助医生进行诊断、手术规划和医学研究,提高医疗服务的质量和效率。原创 2025-06-16 18:39:44 · 43 阅读 · 0 评论 -
Cherry Studio 是由 CSDN、GitCode 及华为云 CodeArts IDE 联合开发的新一代 AI 编程工具
还支持 WebDAV 文件管理与数据备份。* **多模型集成** :集成超过 300 个语言模型,涵盖 OpenAI、DeepSeek 等云端服务及 Ollama 本地部署,首创多模型并行对话功能,用户可同时调用多个大语言模型进行对话和创作。* **智能代码功能** :开创性地将自然语言交互与代码生成技术融合,为开发者提供智能代码补全、项目级代码改写和全栈开发支持,还提供代码高亮显示功能。* **多模型对话与创作** :支持同时与多个模型对话,可快速获取信息或生成内容,适用于内容创作者和研究人员。原创 2025-06-16 11:37:53 · 186 阅读 · 0 评论 -
共同构成了深度学习模型训练和优化的知识体系。理解这些概念及其相互关系,有助于更好地进行深度学习模型的设计、训练和优化。
**归一化** :对输入数据或网络中的特征进行归一化处理,使其具有零均值和单位方差,有助于加速模型的收敛速度,提高模型的性能。* **Adam** :结合了动量法和 RMSProp 算法的优点,是一种自适应矩估计优化算法,它根据参数梯度的一阶矩和二阶矩动态调整学习率,具有收敛速度快、性能稳定的特点,是目前深度学习中常用的优化算法之一。* **RMSProp** :一种自适应学习率优化算法,通过计算梯度的平方的移动平均来动态调整学习率,能够有效地解决梯度消失和梯度爆炸问题,提高模型的训练效率。原创 2025-06-14 12:44:27 · 102 阅读 · 0 评论 -
在卷积神经网络(CNN)中,多层结构是其核心组成部分,这些层协同工作以从输入数据中提取特征,并最终用于分类或回归等任务。
**功能**:卷积层的主要作用是从输入数据中提取特征。- **功能**:池化层主要用于减小特征图的空间尺寸,从而减少计算量和控制过拟合。除了上述三种基本类型的层外,CNN还可能包括其他类型的层,如归一化层(Normalization Layers)、Dropout层等,用于进一步优化性能和防止过拟合。- **功能**:全连接层中的每个神经元都与前一层的所有神经元相连接。- **Dropout层**:一种正则化技术,随机忽略一部分神经元,以避免模型过拟合。### 池化层(Pooling Layer)原创 2025-06-13 09:36:32 · 166 阅读 · 0 评论 -
神经网络(Neural Network)是机器学习中的一种算法,灵感来源于人类大脑的结构和功能。
4. **激活函数(Activation Function)**:应用于每个神经元的非线性函数,决定神经元是否应该被激活,将输入信号转换为输出信号。8. **过拟合(Overfitting)**:当模型过于复杂,以至于开始记忆训练数据中的细节和噪声而不是泛化学习到的数据模式时发生的现象。3. **权重(Weight)**:连接不同神经元之间的边的强度,决定了一个神经元的输出对另一个神经元的影响程度。1. **神经元(Neuron)**:神经网络的基本单元,模拟了生物神经元的功能。原创 2025-06-12 20:49:17 · 40 阅读 · 0 评论 -
以下是关于本地大模型框架 Ollama 的核心特性与使用要点整理:
底层依赖 llama.cpp 实现推理优化,支持 CPU/GPU 混合计算,显著降低硬件门槛(如树莓派 4GB RAM 可运行 7B 模型)。支持 4-bit 量化(AWQ) 与 TensorRT-LLM 加速,适配 Jetson Orin 等边缘设备。LLaMA:Meta 开源的预训练大模型(如 Llama 3),是 Ollama 支持的基座模型之一。采用 GGUF 格式导入模型,兼容 PyTorch/Safetensors 框架的模型转换。支持热加载模型,无需重启切换任务。原创 2025-06-07 16:22:24 · 305 阅读 · 0 评论 -
基于搜索结果,RX580能否运行大模型取决于显存容量、系统环境及模型优化程度,具体分析如下:
魔改16G显存版本在Linux系统中可流畅运行最高14B参数的大模型(如Deepseek),生成速度达9 tokens/s,超过8G显存的RTX 2070 Super及纯CPU模式的i9-14900K。💎 结论:RX580(尤其是8G/16G版)在Linux深度优化后可运行7B-14B模型,是低预算AI实验的可行方案,但需妥协性能与稳定性。8G显存:运行7B以下模型(如Deepseek-Coder 7B)。8G版仅支持≤7B模型,14B模型需16G显存。标准8G显存版(需深度优化)。原创 2025-06-07 16:19:20 · 325 阅读 · 0 评论 -
以下是AMD Radeon RX 580 2048SP显卡的核心参数汇总,综合各品牌型号的共性特征整理而成:
注:具体参数以品牌型号为准,如蓝宝石白金版核心频率达1306MHz,而精影基础频率为1050MHz;显存差异:4GB版本显存带宽与8GB版相同(256bit),但容量影响高画质游戏表现。价格范围:停产前参考价约439–1500元(受显存容量、品牌及市场供需影响)显存频率:6000–8000MHz(常见7000–8000MHz)加速频率:1284–1340MHz(厂商调校差异)显存容量:主流为8GB(部分型号提供4GB版本)多屏支持:最高支持4K@60Hz或5屏输出。整卡功耗:约150W(最大功耗)原创 2025-06-07 16:16:17 · 952 阅读 · 0 评论 -
LangChain4j 支持以下大模型:
**Anthropic、Perplexity、h2oAI、replicate、mlx 兼容模型、together 和 vllm** :LangChain4j 提供了与这些模型的集成。* **LLaMA 系列** :包括 LLaMA 7B、13B、33B、65B 等,以及基于 LLaMA 的改进版本如 LLaMA 2、Alpaca、Vicuna 等。* **Falcon 系列** :如 Falcon 7B、40B 等。* **Guanaco** :基于 LLaMA 等模型训练的开源模型。原创 2025-04-22 23:21:44 · 401 阅读 · 0 评论 -
解释PyTorch与TensorFlow代码差异
使用 `while` 循环,当 `A < B` 时,每次循环将 `A` 增加 2,`B` 增加 1。- 定义循环体函数 `body`:每次循环将 `A` 增加 2,`B` 增加 1。- 初始化两个张量 `A` 和 `B`,值分别为 `[0]` 和 `[10]`。- 初始化两个张量 `A` 和 `B`,值分别为 `0` 和 `10`。- 最终结果:`A = 10`,`B = 13`。- 初始值:`A = 0`,`B = 10`。- 初始值:`A = 0`,`B = 10`。两者功能相同,但实现方式不同。原创 2025-04-02 22:24:52 · 405 阅读 · 0 评论 -
三种多智能体协同模式,分别是上下级协同、师生式协同和竞争式协同。
**结构**:多个智能体(智能体1、智能体2、智能体3等)各自提出决策(决策1、决策2、决策3等),然后通过某种机制(如投票或裁决)来决定最终决策。- **结构**:由一个专家或专家智能体(Expert/Expert Agent)和一个新手智能体(Novice Agent)组成。- **结构**:一个中控智能体(Central Controller)管理多个子智能体(Sub-L1, Sub-L2等)。- **师生式协同**:适合难以拆解的复杂任务。- **竞争式协同**:适合开放性的复杂任务。原创 2025-04-01 16:31:15 · 309 阅读 · 0 评论 -
AI应用工具
**丰富的视频模板库**:超过300种视频模板,涵盖各种风格和主题,用户可以轻松选择合适的模板,快速制作出专业级别的视频内容。- **视频多语言翻译配音**:支持视频内容的多语言翻译,并提供专业的配音服务,确保信息准确传达,跨越语言障碍,触及全球观众。- **娱乐创作**:用户可以利用数字人创作各种有趣的视频内容,如虚拟主播、虚拟角色表演等,满足娱乐创作的需求。- **市场营销**:利用数字人的形象和声音,增强信息的传递力和记忆度,从而提升营销效果和品牌影响力。原创 2025-04-01 15:57:26 · 393 阅读 · 0 评论 -
提示词工程(Prompt Engineering)概述
提示词工程的优化是一个持续的过程,通过不断尝试和调整提示词的表述方式、添加或删除元素等方式,可以逐步优化提示词的效果。2. **少样本学习(Few-shot Learning)**:提供少量示例,让模型通过这些示例学习输出格式,从而提升生成效果。1. **零样本学习(Zero-shot Learning)**:直接输入提示词,让模型推断输出,无需任何示例或训练数据。4. **数据增强**:通过提示词生成多样化的数据,用于训练其他模型。2. **问答系统**:通过设计清晰、具体的提示词,生成智能回复。原创 2025-04-01 15:20:00 · 335 阅读 · 0 评论 -
Foodini是一款AI驱动的烹饪助手,旨在帮助用户轻松创建个性化食谱并追踪营养摄入。
**3D打印食物**:Foodini还具有3D打印功能,可以制作各种形状和设计的食物,如饼干、蛋糕、披萨等。- **个性化食谱生成**:根据用户的饮食偏好、过敏原和健康目标,Foodini能够创建符合个人需求的食谱。- **食材利用最大化**:通过识别用户现有的食材,Foodini可以生成多种食谱建议,减少食物浪费。- **创意烹饪**:为厨师和烹饪爱好者提供新的创意和灵感,探索不同的食材组合和烹饪方式。- **创意**:提供新的烹饪创意和灵感,探索不同的食材组合和烹饪方式。原创 2025-04-01 14:48:14 · 504 阅读 · 0 评论 -
Tableau是一款强大的数据可视化和商业智能软件,广泛应用于各个行业和领域
**Tableau 2025.1版本发布**:带来了许多新功能和改进,如VizQL数据服务API、Pulse主页升级、自定义主题、逻辑表数据源筛选器等,进一步增强了分析能力和用户体验。- **AI与机器学习集成**:结合AI和机器学习技术,提供预测分析和智能洞察,帮助用户更好地理解和预测数据趋势。- **增强的AI功能**:Tableau继续在AI和机器学习领域进行创新,提供更智能的分析和预测功能。- **分析与探索**:提供丰富的分析功能,如计算字段、筛选器、排序等,帮助用户深入挖掘数据中的洞察。原创 2025-04-01 14:42:57 · 333 阅读 · 0 评论 -
即梦AI支持多种类型的视频创作
例如,首部AIGC科幻短剧集《三星堆:未来启示录》,以及AIGC奇幻探险短剧《兴安岭诡事》等,都是通过即梦AI技术生成的。例如,输入“浪漫的海边,夕阳西下,一对情侣手牵手漫步在沙滩上”,即梦AI会根据这个描述生成相应的视频内容。用户可以上传单张或多张图片,让图片中的元素动起来,生成视频。比如,上传一组风景图片,设置运镜控制为平移,运动速度适中,生成一段美丽的风景视频。即梦AI的“动作模仿”功能可以让用户上传图片和参考视频,使图片中的人物模仿参考视频中的动作和表情,从而创作出逼真的AI视频。原创 2025-04-01 14:39:28 · 352 阅读 · 0 评论 -
一个智能体(智能体)的架构
**向量数据库**:可能用于存储和检索向量化表示的知识。- **语音识别**:将语音转换为文字或可处理的信息。- **感知**:负责接收和处理来自环境的输入信息。- **决策**:根据感知到的信息进行分析和决策。- **行动**:执行决策后的具体动作或输出。- **推理**:基于已有的知识进行逻辑推理。- **说话中枢**:进行语音和视频类的输出。- **图像识别**:识别和分析图像内容。- **决策**:做出最优的选择或判断。- **书写中枢**:进行文字类的输出。原创 2025-04-01 12:11:44 · 326 阅读 · 0 评论 -
一个 AI Agent(人工智能代理)的架构图
**Short-term memory(短期记忆)**:存储当前任务相关的短期信息,用于快速访问和处理。- **Long-term memory(长期记忆)**:存储长期知识和经验,用于支持更复杂的任务。- **Agent → Planning**:Agent 将任务需求传递给规划模块。- **Tools → Agent**:工具模块为 Agent 提供功能支持。- **Self-critics(自我批评)**:识别潜在问题并改进。- **Action → Tools**:行动模块调用工具完成任务。原创 2025-04-01 11:48:25 · 543 阅读 · 0 评论 -
Transformer 是一种基于自注意力机制(Self-Attention Mechanism)的深度学习模型架构
它的核心创新在于完全摒弃了传统的循环神经网络(RNN)或卷积神经网络(CNN),转而依赖自注意力机制来处理序列数据,从而在多个自然语言处理(NLP)任务中取得了突破性进展。- **捕捉长距离依赖**:自注意力机制能够有效处理序列中远距离的元素关系,解决了 RNN 在长序列中梯度消失的问题。- **并行化训练**:相比 RNN 的顺序处理,Transformer 的并行计算显著提高了训练速度。- **语音识别** 和 **图像处理**(通过扩展到其他模态)- **文本生成**(如 GPT 系列模型)原创 2025-04-01 10:19:43 · 561 阅读 · 0 评论 -
主要介绍了如何使用 LangServe 框架来构建和部署基于自然语言处理(NLP)模型的应用程序,具体步骤如下:
启动程序后,可以在浏览器中打开 `http://127.0.0.1:5100/chain/playground/` 测试应用提供的接口,或者通过 `http://127.0.0.1:5100/docs` 查看接口文档。LangServe 的灵活性和易用性使其成为构建 NLP 应用的理想选择。- **易于调试**:提供了一个 Playground,允许开发者实时与智能机器人互动,测试不同输入并查看即时输出,有助于快速迭代和调试。- **安全性**:提供了一些安全性措施,如请求追踪,确保数据传输的安全。原创 2025-03-26 22:03:48 · 284 阅读 · 0 评论 -
# 一文教会你用 LangChain 快速构建大模型应用
**langchain-core**:是 LangChain 的核心包,提供了构建和管理语言模型应用所需的基本组件和功能,包括链(Chains)、代理(Agents)、工具(Tools)和内存(Memory)等,帮助开发者快速搭建复杂的自然语言处理工作流。- **Integrations 集成包**:是指与其他工具和服务的连接,旨在扩展 LangChain 的功能和应用场景。# --------输出--------# --------输出--------# --------输出--------原创 2025-03-26 21:47:05 · 723 阅读 · 0 评论 -
使用 LangChain、LLM 和 Streamlit 构建人工智能驱动的 PDF 对话助手
构建一个能够与 PDF 文档进行智能对话的助手,用户可以提出与 PDF 文件内容相关的问题,助手从文档中检索相关信息以提供准确的答复。3. **模型集成**:使用 LangChain 将 LLM 与 PDF 数据源集成,实现对文档内容的理解和检索。4. **应用开发**:利用 Streamlit 构建用户界面,实现用户与 PDF 对话助手的交互功能。5. **测试与优化**:对构建的应用进行测试,根据用户反馈优化模型和界面。希望本文对您有所帮助!2. **数据准备**:收集和整理需要摄取的 PDF 文档。原创 2025-03-26 21:04:11 · 536 阅读 · 0 评论 -
大语言模型(LLM)在处理复杂任务时确实存在一些局限性,主要体现在以下几个方面:
这些局限性表明,尽管大语言模型在许多自然语言处理任务中表现出色,但在需要与外部工具交互、适应动态环境和执行复杂多步骤任务的场景中,它们的能力是有限的。- **逻辑推理能力有限**:虽然大语言模型在自然语言处理方面表现出色,但在执行多步骤的逻辑推理任务时,它们的表现可能会下降。- **缺乏上下文感知**:大语言模型无法感知外部环境的变化,例如当前的时间、地点、用户的具体情况等。- **无法适应动态变化**:现实世界的情况是动态变化的,而大语言模型无法自动适应这些变化,需要通过不断的重新训练来更新其知识。原创 2025-03-26 20:30:02 · 589 阅读 · 0 评论 -
LangChain 是一个用于开发由大型语言模型(LLMs)驱动的应用程序的框架。
**LLMs(大型语言模型)集成**:与各种主流的大型语言模型无缝对接,支持 OpenAI、Hugging Face 等平台,方便模型的替换和比较。- **Tools(工具)**:可执行的功能单元,封装了具体的操作,如查询数据库、调用 API、执行计算等,供代理和链调用。- **Chains(链)**:核心组件,用于串联不同的处理步骤,可以是简单的顺序执行,也可以包含复杂的条件和循环逻辑。- **数据连接器**:预置了对常见数据源的支持,如文件系统、数据库、网络请求等,方便数据的获取和存储。原创 2025-02-28 22:17:31 · 415 阅读 · 0 评论 -
DeepSeek本地部署和快速上手指南
然而,随着用户数量的激增,DeepSeek 的在线服务时常面临访问压力,可能会出现导致响应延迟甚至服务中断的情况。访问 https://ollama.com/ 进入 Ollama 官网下载 Ollama ,下载时有三个系统的安装包可选择,这里只需要选择下载我们电脑对应的操作系统版本即可,下面以 Windows 版本为例。需注意的是,我们需要根据自己电脑的硬件配置来选择模型大小,下面是一个模型大小配置参考表格,大家可根据自己的电脑配置来自行选择,当然了,部署的本地模型越大,使用的深度求索效果就越好。原创 2025-02-15 00:22:49 · 2865 阅读 · 0 评论