- 博客(21)
- 收藏
- 关注

原创 迈向绿色未来的第一步-能源数字化管理系统
本系统包括如下几个大功能模块:数据看板,充电桩,设备管理,运维管理,报警管理,定额管理,能耗分析,管理体系,碳资产管理,数据查询,分析报告,视频监控,系统管理。我们的系统提供实时能源使用监控,让您随时掌握设施的能源消耗情况。:借助先进的数据分析工具,我们帮助您深入理解能源消耗模式,为您提供定制化的节能建议。:通过自动化控制解决方案,减少人工干预,提高能源使用效率,同时降低运营成本。:无论您的企业规模大小,我们的专业团队都能为您提供量身定制的部署方案。能耗分析及能耗趋势页面。能耗分析及能耗流向页面。
2024-10-10 14:18:39
559
原创 利用deepseek集成mes系统实现mes系统生成流程管理的代码案例
以下是一个简化的示例代码框架,展示了如何利用 DeepSeek(假设是一个特定的工具或库,这里只是示例,实际中你需要根据其真实的API和使用方式调整)集成到一个 MES 系统中,实现简单的流程管理以及数据的增删改查操作。这里假设使用 Python 语言,并且 MES 系统的数据存储在一个简单的 SQLite 数据库中(实际可能是 MySQL、Oracle 等其他数据库),DeepSeek 相关的代码部分是模拟的,你要根据真实的 DeepSeek 进行替换。# 创建流程管理相关的表(假设)
2025-02-25 09:19:15
650
原创 要将DsspSeek微调为行业专用的大模型,需要结合领域知识、数据优化和模型调整策略。
领域预训练(可选):在行业语料上继续预训练(Continual Pre-training),增强模型对领域语言的表征能力。领域术语库:构建行业专属的词典、实体列表(如药品名、法律条款、金融术语),用于增强模型对专业词汇的理解。数据增强:通过同义词替换(使用领域词典)、文本重组、合成数据(如GPT生成)扩充小样本场景的数据量。- 构建行业基准测试集(如医疗问答、合同审核),设计针对性指标(如诊断准确率、条款覆盖率)。模型压缩:通过知识蒸馏(将大模型知识迁移到小模型)、量化(FP16/INT8)降低推理成本。
2025-02-04 19:34:45
5887
原创 DeepSeek如何微调成智能制造专用大模型?
将DeepSeek微调成智能制造专用大模型,关键在于结合智能制造领域的专业数据与合适的微调方法。之后,就可以将微调后的模型应用于实际的智能制造场景,如智能客服、生产流程优化建议生成等。上述代码展示了一个基本的将DeepSeek模型微调为智能制造专用大模型的流程,实际应用中,你可能需要根据数据集的规模、质量以及具体的业务需求对参数和数据处理方式进行调整。", "response": "可以通过改进路径规划算法,结合实时传感器反馈来优化工业机器人的运动轨迹。2. 加载模型与设置量化。# 加载分词器和模型。
2025-02-04 19:24:27
1573
原创 MES,ERP,WMS和IoT之间场景联动的python的例子
MES系统 def mes_system(order_id, product_id, production_status): data = { "order_id": order_id, "product_id": product_id, "production_status": production_status } requests.post("http://mes.com/update_production_status", data=data)
2024-12-23 10:28:16
696
原创 用python写一个IoT集成MES系统实现工厂自动化生产的例子
计算平均值和最大值 average_temperature = df['Temperature'].mean() max_temperature = df['Temperature'].max() print(f"平均温度: {average_temperature}°C") print(f"最高温度: {max_temperature}°C")模拟获取温度数据并控制设备 temperature = get_temperature() control_device(temperature) ```
2024-12-19 21:41:25
1202
原创 物联网协同MES系统数据采集的案例
2. MES系统对应的客户端订阅了另一个主题( mes/receive_data ),当接收到数据后,在回调函数中进行简单的数据解析以及根据温度值进行简单的业务逻辑判断(这里只是简单判断温度高低并打印提示信息,实际中可以对接数据库、触发生产调整等复杂操作)。请注意这只是一个很基础简单的示例,真实的物联网协同MES系统要复杂得多,涉及到安全认证、海量设备管理、更严谨的数据交互格式以及与实际生产系统深度集成等众多方面,需要根据具体业务场景去进一步拓展和完善代码。# MES系统订阅的主题,接收物联网设备数据。
2024-12-16 16:57:18
435
原创 利用python写一个关于跨境选品策略的案例
将聚类结果可视化,帮助我们理解数据的分布 plt.scatter(X[:,0], X[:,1], c=predicted_clusters, cmap='viridis') plt.title('Cluster Analysis for Cross-border Product Selection') plt.xlabel('Feature 1') plt.ylabel('Feature 2') plt.show()# 假设我们有一些关于商品的数据,包括其在不同市场的销售数据。
2024-10-13 20:37:11
539
原创 利用python写一个能源管理的算法代码
分析每个 cluster 的电力消耗 clusters_analysis = df.groupby('cluster').agg({'consumption': ['mean', 'std']}) print(clusters_analysis)# 基于分析结果,我们可以进一步采取措施,比如对 standard deviation 小的 cluster 进行更深入的分析, # 或者调整电力使用策略,以减少不必要的波动,从而实现节能。在此,我提供一个简单的Python示例,用于分析和优化电力消耗。
2024-10-10 14:30:56
545
原创 用python写一个智能工厂生产管理规划的算法
请注意,这个示例非常简化,实际的智能工厂生产管理算法可能会更加复杂,需要考虑更多的因素,如设备的维护周期、原材料的供应情况、市场需求的波动等。1. 数据收集与预处理:收集工厂的各项数据,如设备状态、订单需求、库存水平等,并进行预处理,为算法提供干净、格式一致的数据输入。5. 结果应用:将优化后的生产计划应用到实际生产中,监测执行效果,并根据实际情况调整模型和算法。# 将优化后的生产计划应用到实际生产中,监测执行效果,并根据实际情况调整模型和算法。# 假设我们有一个生产线,每个产品有一个特定的生产时间。
2024-08-31 08:34:21
1403
1
原创 用python写一段生产库存规划的算法
这个简单的库存规划算法基于经济订货量(EOQ)模型,它可以帮助确定最优的订货量和订货时间。然而,实际的库存规划可能需要考虑更多的因素,如市场需求的不确定性、供应风险、多级供应链协调等。在实际应用中,可能需要使用更复杂的模型和算法,或者借助于高级的库存管理软件和人工智能技术来进行更加精准的预测和规划。self.lead_time = lead_time # 订货提前期(从下单到到货的时间)self.order_cost = order_cost # 每次订货成本。# 计算最优订货周期。
2024-08-30 21:46:58
1758
原创 用python写一个生产管理算法
Worker` 类代表工人,包括工人的ID、技能和可用性。`Task` 类代表任务,包括任务的ID和完成任务所需的技能。然后,我们定义了一个生产管理算法,该算法遍历所有任务,并尝试找到能够完成每个任务的工人。如果找到了合适的工人,则将任务分配给该工人,并标记工人为忙碌。这个算法是一个非常基础的示例,实际的生产管理算法可能会更加复杂,包括更多的因素,如工人的工作效率、任务优先级、生产线平衡等。下面我将提供一个基本的任务分配算法的示例,这个算法将基于工人的技能和可用性来分配任务。
2024-08-29 09:59:55
501
原创 用python写一个跨境电商数据分析接口
curl -X POST -H "Content-Type: application/json" -d '{"data": [{"product_id": 1, "product_name": "商品1", "sold_quantity": 10, "revenue": 100.0, "buyer_country": "中国", "purchase_time": "2022-01-01 12:00:00"}]}' http://127.0.0.1:5000/api/analytics。
2024-07-30 16:41:58
741
原创 python写一个基于供应链系统和生产管理系统的算法
生产调度是在有限的生产资源下,合理地安排生产顺序和生产批量,以实现生产目标(如减少生产时间、降低生产成本等)。production_plan -- 生产计划,为一个列表,表示每道工序在哪个机器上生产。production_times -- 每个生产计划所需的生产时间。production_times -- 每个生产计划所需的生产时间。storage_cost_per_unit -- 单位库存成本。best_production_plan -- 最佳生产计划。cost_per_unit -- 单位产品成本。
2024-07-13 23:00:18
834
原创 用python一个集mes和erp在企业微信协同的服务案例
这个类可以包含以下方法: - `get_production_orders`:方法,用于获取当前所有生产订单。- `update_production_progress`:方法,用于接收生产进度数据,并将其转发给相应的人员。- `receive_production_order`:方法,用于接收ERP系统下发的生产订单,并通知相关人员。要使用Python实现一个集MES和ERP于一体的企业微信协同服务案例,我们可以利用企业微信的API和第三方库`wechatpy`。
2024-07-06 05:18:57
759
原创 用python写一个跨境货运代理数字化系统
请注意,这个示例仅用于演示目的,实际应用可能需要考虑更多的功能和安全性。此外,您还可以考虑使用其他数据库,如PostgreSQL或MySQL,以提高性能和扩展性。现在,您可以运行`app.py`文件启动Flask应用。访问`http://127.0.0.1:5000/`,您将看到货运信息列表。这是一个简单的示例,您可以根据需要进行扩展和修改。我们首先定义一个简单的数据库模型,用于存储货运信息。**第一步:设定数据库模型****第二步:设计用户界面****第三步:编写后端代码****第四步:编写前端代码**
2024-06-30 10:56:14
587
原创 用python写一个scrm,erp,mes系统的数字化应用场景
在MES系统中处理生产订单 self.mes_system.receive_production_order(order1) self.mes_system.receive_production_order(order2)这个示例展示了如何使用Python实现一个简化版的SCRM、ERP和MES系统的数字化应用场景。在这个数字化应用场景中,我们将实现一个简化版的SCRM(社交客户关系管理)、ERP(企业资源规划)和MES(制造执行系统)的集成。# 在ERP系统中添加订单。
2024-06-29 09:41:47
1291
原创 用python写一个AI Agent在跨境获客落地应用案例
这个例子中,我们使用了一个简单的神经网络模型来进行客户细分和推荐。最后,使用训练好的模型对实时客户数据进行细分,并根据细分结果推荐相应的产品。首先,我们需要安装一些必要的Python库,如`numpy`、`pandas`、`sklearn`和`tensorflow`。在跨境获客场景中,一个典型的AI Agent落地应用案例可以是客户细分与推荐策略。在实际应用中,可以根据实际跨境获客数据和需求调整模型结构、参数和数据预处理方法。接下来,我们编写一个简单的AI Agent,用于跨境获客场景中的客户细分和推荐。
2024-06-28 09:50:03
795
原创 使用python基于AI Agent开发一个企业数据探索案例
转换为数值型数据 df['Sales'], df['Expenses'], df['Employees'] = ( pd.to_numeric(df['Sales'], errors='coerce'), pd.to_numeric(df['Expenses'], errors='coerce'), pd.to_numeric(df['Employees'], errors='coerce') )我们将使用一个简化的数据集,您可以通过模拟或其他途径获取更复杂的企业数据。
2024-06-27 13:35:25
591
1
原创 用python写一个MES数字化应用案例
def monitor_production_progress(self): for production_order in self.production_orders: mes_progress = self.get_production_progress(production_order) if mes_progress: print(f"生产订单{production_order}的进度:{mes_progress}%")``` 以上代码模拟了一个简单的MES和ERP系统协同工作场景。
2024-06-27 11:27:33
980
1
原创 用python写一个AI Agent在智能制造系统的落地应用案例
这个例子中,我们使用了一个简单的神经网络模型来预测设备故障。然后,对数据进行预处理,并划分训练集和测试集。最后,使用训练好的模型预测测试集数据,并评估模型性能。通过这个AI Agent,我们可以实时监控设备的关键指标,并对潜在故障进行预测,从而实现智能制造系统中设备的智能化管理与维护。首先,我们需要安装一些必要的Python库,如`numpy`、`pandas`、`sklearn`和`tensorflow`。接下来,我们编写一个简单的AI Agent,用于监控智能制造系统中的设备状态并预测潜在故障。
2024-06-27 09:29:32
816
2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人