deepseek-MTP中用到的RMSNorm均方根归一化

1. 概述

DeepSeek-V3研究并设置了一个多token预测(MTP)目标,该目标将预测范围扩展到每个位置的多个未来tokenMulti-Token Prediction(MTP)可以显著加快模型的解码速度,MTP中用到了RMSNorm,RMSNorm(Root Mean Square Layer Normalization,均方根归一化)是一种用于深度学习模型的归一化技术,特别适用于Transformer等架构。它作为LayerNorm(层归一化)的替代方案,旨在简化归一化过程,降低计算复杂度,同时保持或提升模型的性能。

2. RMSNorm的优势

深度学中,归一化技术被广泛用于稳定和加速模型训练。LayerNorm在Transformer模型中得到了广泛应用,它通过对每个样本的特征维度进行归一化,减少了内部协变量偏移。然而,LayerNorm需要计算输入特征的均值和方差,这增加了计算复杂度和开销。RMSNorm的提出是为了消除对均值计算的依赖,仅通过输入特征的均方根(RMS)进行归一化,从而简化计算,提高效率。

3. 数学公式

给定输入向X,其中d是特征度;

3.1 layerNorm

计算均值和方差:

一化操作:

3.2 RMSNorm

计算均方根(RMS):

归一化输入向量:

应用缩放和偏移参数

不计算均值,仅计算均方根(RMS)。

归一化操作不减去均值,直接除以均方根。

4. 总结

计算复杂度:RMSNorm减少了均值的计算,降低了整体计算量。

值稳定性:RMSNorm避免了方差接近零的情况,提升了数值稳定性。

性能:在某些任务中,RMSNorm可以达到或超过LayerNorm的性能。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值