1. 概述
DeepSeek-V3研究并设置了一个多token预测(MTP)目标,该目标将预测范围扩展到每个位置的多个未来token,Multi-Token Prediction(MTP)可以显著加快模型的解码速度,MTP中用到了RMSNorm,RMSNorm(Root Mean Square Layer Normalization,均方根归一化)是一种用于深度学习模型的归一化技术,特别适用于Transformer等架构。它作为LayerNorm(层归一化)的替代方案,旨在简化归一化过程,降低计算复杂度,同时保持或提升模型的性能。
2. RMSNorm的优势
在深度学习中,归一化技术被广泛用于稳定和加速模型训练。LayerNorm在Transformer模型中得到了广泛应用,它通过对每个样本的特征维度进行归一化,减少了内部协变量偏移。然而,LayerNorm需要计算输入特征的均值和方差,这增加了计算复杂度和开销。RMSNorm的提出是为了消除对均值计算的依赖,仅通过输入特征的均方根(RMS)进行归一化,从而简化计算,提高效率。
3. 数学公式
给定输入向量X,其中d是特征维度;
3.1 layerNorm的计算过程
计算均值和方差:
归一化操作:
3.2 RMSNorm的计算过程
计算均方根(RMS):
归一化输入向量:
应用缩放和偏移参数:
不计算均值,仅计算均方根(RMS)。
归一化操作不减去均值,直接除以均方根。
4. 总结
计算复杂度:RMSNorm减少了均值的计算,降低了整体计算量。
数值稳定性:RMSNorm避免了方差接近零的情况,提升了数值稳定性。
表现性能:在某些任务中,RMSNorm可以达到或超过LayerNorm的性能。