代数系统
二元运算
积代数
同态与同构
群 环 域
群
半群 幺半群(独异点) 群
Klein四元群
有限群 无限群
交换群(阿贝尔群)
群的性质
这个从表格来看就是一行或者一列的元素各不相同,即
一些推论
群的阶以及元素的阶
群的阶
元素的阶
陪集 子群 拉格朗日定理
子群的定义
- 注意是非空子集
- 因为子群是群的非空子集,所以封闭性成立的话显然结合律成立
子群判定定理
陪集
拉格朗日定理
循环群
循环群的定义
循环群的类别
循环群的生成元
即有限循环群中,生成元的阶和群的阶相等(其实从图上很好理解)
其实这个从图上也很好理解,如果有两个相同,那么存在路径更短的回路
用到了裴蜀定理
循环群的子群
置换群
环 域
环
零因子
交换环 含幺环 无零因子环 整环 域
格与布尔代数
格的定义
一种判断方法,看上面或者下面的是不是分叉,分叉的话显然不是格
子格要看子格中的元素任意两个的最小上界和最大下界(在原格中寻找)是否还在子格中,如果不在说明不是子格。
格的对偶
格的同态与同构
格的性质
特殊的格
分配格
注意是充要条件,而且是子格
(1)因为小于五个元素一定不包含钻石格或五角格
(2)链显然也不可能包含钻石格或五角格
有界格 有补格
有补格
有界分配格——有补元的话补元唯一,但不能保证每个元素都有补元
有补格——保证每个元素都有补元,但补元不一定唯一,且有补格必须是有界格(这么理解,不是有界就没有0和1了)
有补分配格=布尔格——不仅每个元素都有补元,而且补元唯一
有补分配格(布尔格)
布尔代数
证明是布尔代数—— 首先画哈斯图证明是格,其次证明为有补格和分配格
布尔代数的性质
有限布尔代数
即跟a有偏序关系的取下确界是a,没有关系的取下确界就是0