[离散数学] 代数系统 群环域 格与布尔代数

代数系统

二元运算

在这里插入图片描述

积代数
在这里插入图片描述

同态与同构

群 环 域

半群 幺半群(独异点) 群
在这里插入图片描述
Klein四元群
在这里插入图片描述

有限群 无限群
交换群(阿贝尔群)
在这里插入图片描述
在这里插入图片描述

群的性质

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
这个从表格来看就是一行或者一列的元素各不相同,即
在这里插入图片描述

一些推论
在这里插入图片描述
在这里插入图片描述

群的阶以及元素的阶

群的阶
在这里插入图片描述

在这里插入图片描述
元素的阶
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

陪集 子群 拉格朗日定理

子群的定义

在这里插入图片描述

  1. 注意是非空子集
  2. 因为子群是群的非空子集,所以封闭性成立的话显然结合律成立
    在这里插入图片描述

子群判定定理

在这里插入图片描述

陪集

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

拉格朗日定理

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

循环群

循环群的定义

在这里插入图片描述

循环群的类别

在这里插入图片描述

循环群的生成元

即有限循环群中,生成元的阶和群的阶相等(其实从图上很好理解)
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

其实这个从图上也很好理解,如果有两个相同,那么存在路径更短的回路

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
用到了裴蜀定理

循环群的子群

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

置换群

环 域

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

零因子

在这里插入图片描述
在这里插入图片描述

交换环 含幺环 无零因子环 整环 域

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

格与布尔代数

在这里插入图片描述

格的定义

在这里插入图片描述

在这里插入图片描述

一种判断方法,看上面或者下面的是不是分叉,分叉的话显然不是格

在这里插入图片描述
在这里插入图片描述
子格要看子格中的元素任意两个的最小上界和最大下界(在原格中寻找)是否还在子格中,如果不在说明不是子格。

格的对偶

在这里插入图片描述

格的同态与同构

在这里插入图片描述
在这里插入图片描述

格的性质

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

特殊的格

分配格

在这里插入图片描述
在这里插入图片描述
注意是充要条件,而且是子格
在这里插入图片描述
(1)因为小于五个元素一定不包含钻石格或五角格
(2)链显然也不可能包含钻石格或五角格

在这里插入图片描述

有界格 有补格

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

有补格
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
有界分配格——有补元的话补元唯一,但不能保证每个元素都有补元
有补格——保证每个元素都有补元,但补元不一定唯一,且有补格必须是有界格(这么理解,不是有界就没有0和1了)
有补分配格=布尔格——不仅每个元素都有补元,而且补元唯一

有补分配格(布尔格)

在这里插入图片描述

布尔代数

在这里插入图片描述
在这里插入图片描述
证明是布尔代数—— 首先画哈斯图证明是格,其次证明为有补格和分配格
在这里插入图片描述

布尔代数的性质

在这里插入图片描述
在这里插入图片描述

有限布尔代数
在这里插入图片描述
即跟a有偏序关系的取下确界是a,没有关系的取下确界就是0

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值