https://github.com/HydroPML/FloodCastBench/tree/main
一、研究背景与意义
洪水是一种频繁发生且具有广泛破坏性的自然灾害,对全球人类生命和基础设施造成了巨大损失。因此,可靠的洪水预测系统对于及时向政府决策者、紧急救援人员和脆弱社区传递关键灾害信息至关重要,能够显著提高防备能力并减轻洪水相关风险。随着机器学习(ML)技术的快速发展,将机器学习的快速推理和分辨率灵活性与物理模型的可解释性和可转移性相结合,为精确的实时洪水预测提供了潜力。然而,现有的数据集主要关注洪水事件的多模态描述,缺乏适合机器学习的高时空分辨率、多尺度和多场景的洪水动态过程数据。为了解决这一问题,本文介绍了FloodCastBench数据集,这是一个专为机器学习而设计的大型洪水建模和预测数据集,涵盖了巴基斯坦2022年、英国2015年、澳大利亚2022年和莫桑比克2019年四大洪水事件。
二、研究方法
(一)数据集构建
FloodCastBench数据集的构建过程包括三个阶段:数据准备、数据生产和数据校准。在数据准备阶段,收集了用于初始化水动力模型的相关输入数据(如地形、土地利用、降雨)和洪水测量数据(如SAR地图、调查轮廓),以支持水动力建模和参数校准。在数据生产阶段,采用有限差分数值解法构建了具有30米空间分辨率和300秒时间分辨率的高分辨率时空动态过程。洪水测量数据用于校准水动力模型参数和验证最终的洪水淹没地图。最终,FloodCastBench数据集包括三个部分:具有30米×30米空间分辨率和300秒时间分辨率的洪水动态结果、基于机器学习模型的低保真和高保真洪水预测的空间重采样洪水动态结果,以及用于机器学习模型跨区域转移性的洪水动态结果。
(二)水动力建模
在洪水事件中,水深通常远小于水平淹没范围,因此可以使用二维深度平均浅水方程(SWEs)来描述水流动力学。SWEs由两个守恒定律描述,通过忽略对流加速度项,可以将其简化为适用于洪水建模的方程。这些方程考虑了时间、空间水平坐标、水深、单位宽度的流量、降雨率、入渗率、重力加速度和曼宁摩擦系数等因素。研究中采用了传统的有限差分法来离散化这些方程,并利用Python实现数值解,得到了30米×30米空间分辨率的结果。时间分辨率遵循Courant-Friedrichs-Lewy(CFL)条件,以确保双曲系统稳定。
三、数据描述
FloodCastBench数据集涵盖了四个大型洪水事件,包括巴基斯坦2022年洪水、英国2015年洪水、澳大利亚2022年洪水和莫桑比克2019年洪水。这些数据集具有30米×30米的空间分辨率和300秒的时间分辨率,包括低保真和高保真的洪水预测数据,以及用于跨区域转移性的洪水动态结果。数据文件以TIFF格式存储,文件名按时间顺序编号,每个文件对应300秒的时间步长,直到模拟结束。相关数据文件夹包括DEM、土地利用和土地覆盖、降雨数据、四个洪水事件的地理参考文件以及低保真和高保真洪水模拟的初始条件文件。
四、研究结果
(一)数据集验证
通过将FloodCastBench数据集与洪水测量数据进行比较,验证了其可靠性。研究发现,FloodCastBench的淹没范围与SAR基础洪水地图和调查洪水轮廓在大部分区域吻合,但在某些区域(如巴基斯坦和莫桑比克的农作物区域)存在差异,这可能是由于水动力模型未考虑不同作物类型以及GPM-IMERG降雨数据的不确定性。
(二)机器学习模型验证
为了验证FloodCastBench数据集对机器学习的有效性,研究者开发了洪水预测任务和基准测试,评估了不同尺度下基于机器学习的基础模型的性能和可转移性。实验结果表明,Fourier神经算子(FNO)及其改进版FNO+在低保真和高保真洪水预测中均优于U-Net模型。FNO+通过引入物理变量(如降雨和地形)进一步提高了模型性能。此外,FNO和FNO+在跨区域和降尺度洪水预测中也表现出良好的可转移性。
五、结论与不足
FloodCastBench数据集为洪水建模和预测提供了一个大规模的资源,支持机器学习技术的应用。然而,该数据集也存在一些局限性,如洪水动态数据的不确定性需要通过其他时间序列水文数据进一步验证,洪水预测任务目前仅限于20个时间步长,由于GPU内存限制,对于更长时间的预测(如巴基斯坦2022年洪水的14天或澳大利亚2022年洪水的10天),建议使用更大内存容量的GPU或采用序列到序列的神经预测方法。
六、讨论
本文通过构建FloodCastBench数据集,为洪水预测领域提供了一个新的工具,有助于推动机器学习在洪水建模和预测中的应用。该数据集不仅提供了高时空分辨率的洪水动态数据,还通过基准测试验证了其在支持机器学习模型方面的有效性。然而,研究者也认识到,要实现更准确和更长时间的洪水预测,还需要进一步改进数据集和模型,并考虑更多的物理因素和数据源。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。