2019 ACM/ICPC 南京站 E.Observation,区间筛

本文探讨了一种高效算法,用于计算特定区间内球面上整点的个数,并结合异或操作,针对大规模数据集进行模运算。算法利用积性函数性质和素数特性,通过预处理和区间筛法实现O(nlogn)的时间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目大意


(∑d=LR(fd xor K))(modP)\Big(\sum\limits_{d=L}^{R} (f_d\text{ xor } K)\Big)\pmod{P}(d=LR(fd xor K))(modP)
其中fdf_dfd表示在空间直角坐标系下,圆心(0,0,0)(0,0,0)(0,0,0)且半径为ddd的球上的整点个数
多组数据(T≤10T\le 10T10),其中0≤L≤R≤1013,0≤K≤1018,R−L+1≤1060\le L\le R\le 10^{13}, 0\le K\le 10^{18},R-L+1\le 10^60LR1013,0K1018,RL+1106,质数P满足P≤3×1013P\le 3\times 10^{13}P3×1013

分析

通过打表/OEIS发现fd6\frac {f_d} 66fd是积性函数
且当p为质数且p=4k+1p=4k+1p=4k+1时,f(pe)=pef(p^e)=p^ef(pe)=pe
当p为质数且p=4k+3p=4k+3p=4k+3时,f(pe)=pe+2(pe−1)p−1f(p^e)=p^e+\frac{2(p^e-1)}{p-1}f(pe)=pe+p12(pe1)

注意到区间长度n=R−L+1≤106n=R-L+1\le 10^6n=RL+1106,因此通过预处理R\sqrt RR以内的素数,之后通过区间筛的方式求出fx(L≤x≤R)f_x(L\le x \le R)fx(LxR),然后就可以O(n)O(n)O(n)求上面那个式子了

总复杂度O(Tnlog⁡n)O(Tn\log n)O(Tnlogn)

代码

#include<bits/stdc++.h>
#define LL long long
using namespace std;
LL L,R,k,p;
int T;
const int lim=4000000;
int prime[lim/10+5];
LL f[lim+5],id[lim+5];
bool vis[lim+5];
void init()
{
	for (int i=2;i<=lim;++i)
	{
		if (!vis[i]) prime[++prime[0]]=i;
		for (int j=1;j<=prime[0]&&prime[j]*i<=lim;++j)
		{
			vis[prime[j]*i]=1;
			if (i%prime[j]==0) break;
		}
	}
}
void get(LL L,LL R)//区间筛[L,R]以内的f
{
	for (int i=1;i<=R-L+1;++i) id[i]=i+L-1,f[i]=1;
	for (int i=1;i<=prime[0]&&prime[i]<=R;++i)
	{
		LL last=(L/prime[i])*prime[i],mk;
		if (last<L) last+=prime[i];
		for (;last<=R;last+=prime[i])
		{
			mk=1;
			while (id[last-L+1]%prime[i]==0)
				id[last-L+1]/=prime[i],
				mk*=prime[i];
			if (prime[i]==2) mk=1;
			else if (prime[i]%4==3) mk+=(2*(mk-1)/(prime[i]-1));
			f[last-L+1]*=mk;	
		}
	}
	for (int i=1;i<=R-L+1;++i)
	{
		if (id[i]>1)
			if (id[i]%4==3)
				f[i]*=(id[i]+2);
			else
				f[i]*=id[i];
		f[i]*=6;
		f[i]^=k;
		f[i]%=p;
	}
}
main()
{
	init();
	for(scanf("%d",&T);T;--T)
	{
		scanf("%lld%lld%lld%lld",&L,&R,&k,&p);
		LL ans=0;
		if (L==0) ++L,(ans+=k)%=p; 
		get(L,R);
		
		for (int i=1;i<=R-L+1;++i) ans=(ans+f[i])%p;
		printf("%lld\n",ans);
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值