题目大意
求
(∑d=LR(fd xor K))(modP)\Big(\sum\limits_{d=L}^{R} (f_d\text{ xor } K)\Big)\pmod{P}(d=L∑R(fd xor K))(modP)
其中fdf_dfd表示在空间直角坐标系下,圆心(0,0,0)(0,0,0)(0,0,0)且半径为ddd的球上的整点个数
多组数据(T≤10T\le 10T≤10),其中0≤L≤R≤1013,0≤K≤1018,R−L+1≤1060\le L\le R\le 10^{13}, 0\le K\le 10^{18},R-L+1\le 10^60≤L≤R≤1013,0≤K≤1018,R−L+1≤106,质数P满足P≤3×1013P\le 3\times 10^{13}P≤3×1013
分析
通过打表/OEIS发现fd6\frac {f_d} 66fd是积性函数
且当p为质数且p=4k+1p=4k+1p=4k+1时,f(pe)=pef(p^e)=p^ef(pe)=pe;
当p为质数且p=4k+3p=4k+3p=4k+3时,f(pe)=pe+2(pe−1)p−1f(p^e)=p^e+\frac{2(p^e-1)}{p-1}f(pe)=pe+p−12(pe−1)
注意到区间长度n=R−L+1≤106n=R-L+1\le 10^6n=R−L+1≤106,因此通过预处理R\sqrt RR以内的素数,之后通过区间筛的方式求出fx(L≤x≤R)f_x(L\le x \le R)fx(L≤x≤R),然后就可以O(n)O(n)O(n)求上面那个式子了
总复杂度O(Tnlogn)O(Tn\log n)O(Tnlogn)
代码
#include<bits/stdc++.h>
#define LL long long
using namespace std;
LL L,R,k,p;
int T;
const int lim=4000000;
int prime[lim/10+5];
LL f[lim+5],id[lim+5];
bool vis[lim+5];
void init()
{
for (int i=2;i<=lim;++i)
{
if (!vis[i]) prime[++prime[0]]=i;
for (int j=1;j<=prime[0]&&prime[j]*i<=lim;++j)
{
vis[prime[j]*i]=1;
if (i%prime[j]==0) break;
}
}
}
void get(LL L,LL R)//区间筛[L,R]以内的f
{
for (int i=1;i<=R-L+1;++i) id[i]=i+L-1,f[i]=1;
for (int i=1;i<=prime[0]&&prime[i]<=R;++i)
{
LL last=(L/prime[i])*prime[i],mk;
if (last<L) last+=prime[i];
for (;last<=R;last+=prime[i])
{
mk=1;
while (id[last-L+1]%prime[i]==0)
id[last-L+1]/=prime[i],
mk*=prime[i];
if (prime[i]==2) mk=1;
else if (prime[i]%4==3) mk+=(2*(mk-1)/(prime[i]-1));
f[last-L+1]*=mk;
}
}
for (int i=1;i<=R-L+1;++i)
{
if (id[i]>1)
if (id[i]%4==3)
f[i]*=(id[i]+2);
else
f[i]*=id[i];
f[i]*=6;
f[i]^=k;
f[i]%=p;
}
}
main()
{
init();
for(scanf("%d",&T);T;--T)
{
scanf("%lld%lld%lld%lld",&L,&R,&k,&p);
LL ans=0;
if (L==0) ++L,(ans+=k)%=p;
get(L,R);
for (int i=1;i<=R-L+1;++i) ans=(ans+f[i])%p;
printf("%lld\n",ans);
}
}