博弈论之SG函数

本文介绍了博弈论中的SG函数及其在有向图游戏中的应用。通过NIM博弈的先手必胜定理,阐述了最优策略的重要性。接着讨论了公平组合游戏的定义,并指出NIM博弈属于此类。有向图游戏被提出,每个局面对应图中的节点,玩家通过移动棋子在图中交替行动。SG函数通过 mex 运算定义,用于描述有向图游戏中节点的状态。最后,说明了有向图游戏的和的SG函数值计算方法——异或其子游戏的SG函数值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引子

在许多地方曾经流行这样一个小游戏:摆出N堆硬币,第i堆硬币有Ai个。两名玩家轮流行动,每次可以任选一堆,从中取走最后一件物品者获胜。两人都采用最优策略,问先手能否必胜。

问题归纳

这种游戏:NIM博弈
游戏中的状态:局面
整局游戏第一个行动的:先手
整局游戏第二个行动的:后手
某一局面下采取任何行动都会输:必败
若在某一局面下存在某种行动,使对手面临必败,则优先采取该行动:最优策略。同时,这样的局面被称为必胜

定理

NIM博弈先手必胜,当且仅当A1 xor A2 xor … xor An !=0
证明:
所有物品被取光显然是个必败局面(对手取走最后一件物品,已获胜),此时: A1 xor A2 xor … xor An =0
对于任意一个局面,如果 A1 xor A2 xor … xor An =x(x!=0),设x的二进制表示下最高位的1在第k位,那么至少存在一堆石子Ai,它的第k位是一。显然Ai xor x<Ai,我们就从Ai中取走若干石子,使其变为Ai xor x,就得到了一个各堆石子异或起来等于0的场面
对于任意一个局面,如果A1 xor A2 xor … xor An = 0,那么无论如何取石子,得到的局面下各堆石子异或起来都不可能=0.假设Ai被取成了A’i,并且A1 xor A2 xor … xor A’i xor… xor An = 0.由消去律得A’i=Ai,相当于没有取石子
ps:不懂消去律的话可看这篇文章:https://blog.csdn.net/wukong412/article/details/37691431

公平组合游戏

若一个游戏满足:
1.有两名玩家交替行动
2.在游戏进程的任意时刻,可以执行的合法行动与轮到哪名玩家无关
3.不能行动的玩家判负
NIM博弈属于公平组合游戏但围棋不属于公平组合游戏

有向图游戏

给定一个有向无环图,图中有唯一的一个节点,在起点上放有一枚棋子。两名玩家交替地把这枚棋子沿有向边进行移动,每次可以移动一步,无法移动者判负。这被称为有向图游戏
公平组合游戏----->有向图游戏
方法为:把每个局面看成图中的一个节点,并且从每个局面向沿着合法行动能够到达的下一个局面连有向边

Mex运算

设S表示一个非负整数集合。定义mex(S)为求出不属于集合S的最小非负整数的运算即:mex(S)=min{x}x不属于S

SG函数

在有向图游戏中,对于每个节点x,设从x出发有k条有向边,分别到达节点y1,y2,…yk,定义SG(X)为x的后继节点y1,y2…yk的SG函数值构成的集合再执行mex操作的结果,即:SG(x)=mex({SG(y1),SG(y2)…SG(yk)})

有向图游戏的和

有向图游戏的和的SG函数值等于它包含的各个子游戏SG函数值的异或和
即:
SG(G)=SG(G1) xor SG(G2) xor … xor SG(Gm)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值