企业搭建知识库,为什么倾向于私有化部署

在当今信息爆炸的时代,随着企业的发展扩大,企业内部知识分散在每个员工的电脑上,信息冗余,存在多份数据,难以做到统一;文档涉密权限问题管理难度大、监控成本高、管理难度大。企业面临着处理和管理大量知识和信息的挑战。为了更好地组织、共享和管理企业内部知识,许多企业开始搭建内部知识库。知识是企业的财富,知识库作为知识管理的核心环节,对于企业的发展也至关重要。在搭建知识库的过程中,越来越多的企业开始选择私有化部署的方式。那么,为什么企业倾向于私有化部署呢?

前排提示,文末有大模型AGI-CSDN独家资料包哦!

一、数据安全

安全是企业选择私有化部署的重要考虑因素之一。搭建知识库是为了管理企业核心业务的重要信息和机密数据。如果采用公共云或第三方平台搭建知识库,一旦出现安全漏洞或数据泄露,将会给企业带来巨大的损失。通过私有化部署,把系统部署在本地,数据安全可控。企业可以将知识库完全掌控在自己的环境中,避免了依赖第三方的安全风险。企业可以自行决定数据的访问权限和安全措施,通过专业的防火墙和加密技术,有效保障数据的安全性和完整性。

二、降低成本

​虽然私有化部署需要投入较大的资金购买硬件设备和软件许可,但从长期来看,由于资源完全掌握在自己手中,可以降低运营成本。与此相反,公共云或第三方平台需要支付高额的租赁费和使用费,同时还需要承担维护和升级的成本。

当然,在技术上,公司企业内部知识库的搭建是需要专门的技术人员来实现,如果对于一般公司,自己研发制作成本也并不低。这种情况也可以考虑采购带服务,带内容的知识库或者企业文档,这个简单直接,找多个厂家报价,咨询机构最喜欢的就是这类客户;如果公司资金很有限,那么可以找一套开源的企业文档的产品,自己搭建,也可以让服务商部署,费用比较低。

​三、提高可控性

​私有化部署可以使企业对知识库的管理和维护具有更高的可控性。企业可以根据自身的业务需求制定相应的管理策略和技术规范,对知识库进行全面监控和管理。而公共云或第三方平台则往往受到一定的限制,企业无法完全掌控知识库的运行状态和维护过程。

四、定制和扩展

私有化部署提供了更大的灵活性和定制性,它可以根据企业的具体需求进行个性化定制和扩展。企业可以根据自身的业务特点对知识库的功能和性能进行优化和调整,以满足不同的业务场景。而公共云或第三方平台的功能和服务相对固定,难以满足企业的个性化需求

总之,企业在搭建知识库时选择私有化部署是具有很多优势的,为了保障企业数据安全、降低成本、提高可控性、便于定制和扩展等方面的需求,企业更倾向于选择私有化部署。当然,企业在选择私有化部署时也需要注意风险控制和运维管理等问题,确保知识库的安全稳定运行。​

企业私有化部署办公解决方案

针对私有化部署的需求,软开企服JVS平台推出了一体化企业级办公的相关工具,协同办公类:无忧企业文档、无忧企业邮筒、无忧企业计划等等;低代码开发类:JVS低代码、JVS智能BI、无忧规则引擎等等

  • 企业文档(knowledge.bctools.cn),可以快速生成在线的图文、在线的脑图、在线的流程图、在线的word 、excel、ppt等,有内容的交流更加生动形象:

  • JVS快速开发平台(frame.bctools.cn),可以用于快速生成业务管理系统,例如列表页数据展示、用户数据填写表单、业务审核流程与业务编排的动作

  • JVS-BI快速报表(bi.bctools.cn),可以快速配置领导想要看到数据分析结果和数据统计结果,可以跨多种数据来源做关联性分析等等

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
在这里插入图片描述

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

### DeepSeek 私有化部署教程 #### 准备工作 为了顺利进行DeepSeek的私有化部署,需先准备好必要的环境和工具。这包括但不限于安装vLLM和KubeRay两款支持工具[^2]。 #### 下载与配置 1. **获取官方资源** 访问官方地址下载最新的DeepSeek版本及相关文档[^1]。 2. **安装依赖项** 使用包管理器如`pip`来安装所需的Python库和其他依赖软件: ```bash pip install vllm kuberay ``` #### 部署流程 - **初始化集群** 利用KubeRay设置好计算节点池,确保有足够的硬件资源供后续步骤使用。 - **加载预训练模型** 将选定的DeepSeek变种(例如DeepSeek-R1)上传至集群环境中,并完成初步参数调整以适应特定应用场景的需求。 ```yaml apiVersion: ray.io/v1alpha1 kind: RayCluster metadata: name: deepseek-cluster spec: workerGroupSpecs: - replicas: 3 template: spec: containers: - image: deepseek-r1:vlatest resources: limits: cpu: "8" memory: "64Gi" ``` #### 构建专属知识库 按照提供的指南执行以下操作可以快速建立起个性化的本地知识存储系统: - **集成embedding模型** 对于非结构化数据处理部分,则引入专门设计用于特征提取的embedding算法,增强检索精度和响应速度[^3]。 - **添加自定义内容** 用户可以通过图形界面或者命令行方式导入自有资料集到平台内作为补充素材,形成独一无二的知识体系。 ```python from deepseek import KnowledgeBase, EmbeddingModel kb = KnowledgeBase() emb_model = EmbeddingModel.load('path/to/your/model') for doc in custom_documents: kb.add_document(doc.text, emb_model.encode(doc)) ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值