1. 定义
若ab=N(a>0且a≠1),则称b为以
注意:①a的取值范围
②表示底数、指数、幂的关系的三种形式
e.g. 底数为2,指数为5,幂为32的三种表示:
A.
B. log322=5(底数+幂→指数)
C. 32−−√5=2(指数+幂→底数)
一般地,我们记logn10为logn或者lgn,记logne为lnn。
2. 基本性质
①N>0
②log1a=0
证明:设x=log1a
∴ax=1
∵a≠1
∴x=0
∴log1a=0
③logaa=1
证明:设x=logaa
∴ax=a
∵a≠1
∴x=1
∴logaa=1
⑤alogna=n
证明:设x=logna
∴ax=n
将x=logna代入ax=n,
得alogna=n,证毕。
④logaxa=x
证明:设n=ax
∴logna=x
∴logaxa=x
3. 运算性质
若a>0,a≠1,M>0,N>0,则
①logM×Na=logMa+logNa
证明:
设m=logMa,n=logNa
∴am=M,an=N
∴am+n=M×N
∴logM×Na=m+n=logMa+logNa
②logMNa=logMa−logNa
证明:
设m=logMa,n=logNa
∴am=M,an=N
∴MN=aman=am−n
∴logMNa=m−n=logMa−logNa
③log(MN)a=N×logMa
证明:logMNa=logM∗M...∗Ma=nlogMa
④换底公式:logNM=logMalogNa
证明:设n=logNa,m=logMa
∴an=N,am=M
∴N=an=am×nm=(am)nm=Mnm
∴logNM=nm=logNalogMa