对数的定义及其性质

本文详细介绍了对数的定义,包括底数、指数、幂之间的关系,并探讨了对数的基本性质,如log1a=0, logaa=1, alogna=n, logaxa=x。此外,还讲解了对数的运算性质,如乘法、除法、幂的对数运算以及换底公式,是理解对数概念的重要参考资料。" 6179585,657215,Android开发:后台任务与ProgressDialog实战,"['Android开发', '异步任务', '进度提示', 'UI交互']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 定义

ab=N(a>0a1),则称b为以a为底N的对数,记作logNa=ba叫做对数的底数,N叫做真数。

注意:①a的取值范围
②表示底数、指数、幂的关系的三种形式
e.g. 底数为2,指数为5,幂为32的三种表示:
A. 25=32 (底数+指数幂)
B. log322=5(底数+幂指数)
C. 325=2(指数+幂底数)

一般地,我们记logn10logn或者lgn,记lognelnn

2. 基本性质

N>0

log1a=0
证明:设x=log1a
ax=1
a1
x=0
log1a=0

logaa=1
证明:设x=logaa
ax=a
a1
x=1
logaa=1

alogna=n
证明:设x=logna
ax=n
x=logna代入ax=n
alogna=n,证毕。

logaxa=x
证明:设n=ax
logna=x
logaxa=x

3. 运算性质

a>0a1M>0N>0,则

logM×Na=logMa+logNa
证明:
m=logMan=logNa
am=M,an=N
am+n=M×N
logM×Na=m+n=logMa+logNa

logMNa=logMalogNa
证明:
m=logMan=logNa
am=M,an=N
MN=aman=amn
logMNa=mn=logMalogNa

log(MN)a=N×logMa
证明:logMNa=logMM...Ma=nlogMa

④换底公式:logNM=logMalogNa
证明:设n=logNam=logMa
an=N,am=M
N=an=am×nm=(am)nm=Mnm
logNM=nm=logNalogMa

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值