自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(891)
  • 资源 (2)
  • 收藏
  • 关注

原创 H264、H265、H266、AV1编码标准技术全面总结

H264、H265、H266、AV1编码标准技术全面总结

2024-11-23 16:03:32 3434

原创 libaom 源码分析综述【持续更新】

libaom 源码分析综述【持续更新】

2024-10-16 22:59:22 1398 2

原创 x265 源码分析综述【持续更新】

x265 源码分析综述【持续更新】

2024-08-30 10:20:13 511

原创 x264 编码器源码分析综述【持续更新】

x264 编码器源码分析综述

2024-04-26 17:58:42 778

原创 Windows11搭建GPU版本PyTorch 开发环境教程

Windows11搭建GPU版本PyTorch环境详细过程

2024-01-28 00:43:17 2643 2

原创 视频降噪综述

视频前处理降噪处理综述

2022-11-09 10:24:37 5415 2

原创 视频质量评价工具vmaf

全参考视频质量评价算法vmaf

2022-07-19 21:30:07 10672 2

原创 GitHub开源项目Zerox:AI驱动的OCR革命

GitHub开源项目Zerox:AI驱动的OCR革命

2025-07-24 11:36:44 934

原创 视频编解码技术的未来趋势:从H.266到AI驱动的绿色革命

视频编解码技术的未来趋势:从H.266到AI驱动的绿色革命

2025-07-22 14:58:32 1717

原创 智能体(AI Agent)全解析:从起源到2025年爆发

智能体(AI Agent)全解析:从起源到2025年爆发

2025-07-22 10:56:43 1159

原创 4核CPU+4G内存流畅运行!Duix-Mobile开源SDK颠覆数字人硬件门槛

4核CPU+4G内存流畅运行!Duix-Mobile开源SDK颠覆数字人硬件门槛

2025-07-21 15:41:03 1336

原创 解码视觉体验:视频分辨率、屏幕尺寸、屏幕分辨率与观看距离的科学关系

解码视觉体验:视频分辨率、屏幕尺寸、屏幕分辨率与观看距离的科学关系

2025-07-21 10:37:41 1148

原创 Fish Speech:开源多语言语音合成的革命性突破

Fish Speech:开源多语言语音合成的革命性突破

2025-07-18 17:28:49 973

原创 Windows环境中Node.js安装超详细教程

Windows环境中Node.js安装超详细教程

2025-07-18 16:33:02 1079

原创 2025年视频超高清技术应用全景介绍

2025年视频超高清技术应用全景介绍

2025-07-17 16:19:35 1088

原创 GitHub开源轻量级语音模型 Vui:重塑边缘智能语音交互的未来

GitHub开源轻量级语音模型 Vui:重塑边缘智能语音交互的未来

2025-07-17 11:46:02 758

原创 端到端神经网络视频编解码器介绍

端到端神经网络视频编解码器介绍

2025-07-17 11:05:14 842

原创 GitHub开源项目视频转换神器 HandBrake 介绍

GitHub开源项目视频转换神器 HandBrake 介绍

2025-07-16 16:08:03 1028

原创 2025年10大国内外最受欢迎的AI编程工具深度解析

2025年10大国内外最受欢迎的AI编程工具深度解析

2025-07-16 11:39:12 1302

原创 3D视频技术全解析:从原理架构到产业应用的深度探索

3D视频技术全解析:从原理架构到产业应用的深度探索

2025-07-15 19:33:05 878

原创 视频HDR技术全解析:从原理到应用的深度探索

视频HDR技术全解析:从原理到应用的深度探索

2025-07-15 17:41:06 1422

原创 Rembg开源项目全面解析:从原理到实践应用

Rembg开源项目全面解析:从原理到实践应用

2025-07-15 17:04:56 607

原创 视频动态范围技术演进:从SDR到HDR的影像革命

视频动态范围技术演进:从SDR到HDR的影像革命

2025-07-14 17:37:24 1066

原创 2025年 GitHub 主流开源视频生成模型介绍

2025年 GitHub 主流开源视频生成模型介绍

2025-07-14 17:16:36 1823

原创 从一张图到毫秒级万物锁定:一口气追完YOLO v1→v13的史诗级进化路

从一张图到毫秒级万物锁定:一口气追完YOLO v1→v13的史诗级进化路

2025-07-14 15:16:47 1014

原创 YOLOv13来了!基于超图增强的自适应视觉感知实时目标检测

YOLOv13来了!基于超图增强的自适应视觉感知实时目标检测

2025-07-11 16:27:24 318

原创 2025年07月 GitHub 热门项目推荐

2025年07月 GitHub 热门项目推荐

2025-07-10 22:44:24 1207

原创 Windows下VScode配置FFmpeg开发环境保姆级教程

Windows下VScode配置FFmpeg开发环境保姆级教程

2025-07-10 16:06:05 980

原创 视频插帧技术全景:最新研究成果与GitHub源码项目推荐【持续更新】

视频插帧的未来:最新算法进展与开源项目精选

2025-07-09 16:28:43 254

原创 HEVC/H.265 码流分析工具 HEVCESBrowser 使用教程

HEVC/H.265 码流分析工具 HEVCESBrowser 使用教程

2025-07-08 17:11:54 457

原创 【简析论文】CVPR2024 | Perception-Oriented Video Frame Interpolation Via Asymmetric Blending

【简析论文】CVPR2024 | Perception-Oriented Video Frame Interpolation Via Asymmetric Blending

2025-07-08 15:07:14 34

原创 视频插帧技术:从流畅观影到AI创作的革命

视频插帧技术:从流畅观影到AI创作的革命

2025-07-08 11:34:45 1239

原创 沉浸式视频的未来:MV-HEVC与3D-HEVC技术深度解析

沉浸式视频的未来:MV-HEVC与3D-HEVC技术深度解析

2025-07-07 16:38:12 98

原创 FFmpeg中TS与MP4格式的extradata差异详解

FFmpeg中TS与MP4格式的extradata差异详解

2025-07-01 20:10:14 525

原创 VSCode 插件 Remote - SSH:开启高效远程开发之旅

VSCode 插件 Remote - SSH:开启高效远程开发之旅

2025-06-18 19:07:09 935

原创 GitHub 开源 AI 图像超分辨率工具 upscayl 介绍

GitHub 开源 AI 图像超分辨率工具 upscayl 介绍

2025-06-05 10:44:42 776

原创 GitHub 上高 star 的开发者工具推荐【持续更新】

GitHub 上高 star 的开发者工具推荐【持续更新】

2025-05-26 11:29:59 1215

原创 多模态实时交互边界的高效语音语言模型 VITA-Audio 介绍

多模态实时交互边界的高效语音语言模型 VITA-Audio 介绍

2025-05-20 15:21:16 1092

原创 开源语音-文本基础模型和全双工语音对话框架 Moshi 介绍

开源语音-文本基础模型和全双工语音对话框架 Moshi 介绍

2025-05-17 17:06:27 1001

原创 HDR 视频质量评价开源项目 HIDRO-VQA 介绍

HDR 视频质量评价开源项目 HIDRO-VQA 介绍

2025-05-16 11:17:32 121

实时视频帧插值中的中间流估计算法:RIFE系统设计与性能分析提供源码

内容概要:本文提出了一种实时中间流估计算法RIFE(Real-time Intermediate Flow Estimation),用于视频帧插值(VFI)。RIFE采用神经网络IFNet直接从相邻帧和时间编码输入中估计中间流,并引入特权蒸馏方案来改进性能。实验表明,RIFE在多个公共基准上实现了最先进的性能,特别是在任意时间步帧插值场景中表现出色。此外,RIFE支持扩展到深度图插值和动态场景拼接等应用。 适合人群:计算机视觉研究人员、视频处理工程师、机器学习从业者,尤其是对视频帧插值技术感兴趣的读者。 使用场景及目标:① 实现高质量的实时视频帧插值,适用于媒体播放器、显示设备等;② 支持任意时间步的帧插值,提高视频帧率转换的灵活性;③ 减少带宽需求,提供视频编辑服务,适应计算资源有限的用户;④ 支持扩展应用,如深度图插值和动态场景拼接。 其他说明:RIFE的优势在于轻量级设计,不依赖预训练的光流模型,具有较高的效率和灵活性。文中还讨论了模型的设计细节、损失函数的选择以及一些局限性,为未来的研究提供了方向。此外,附录部分提供了RefineNet的架构、中间流可视化等补充材料。

2025-07-09

【计算机视觉】基于Transformer的视频帧插值技术:跨尺度窗口注意力机制的设计与应用提供源码

内容概要:本文提出了一种基于Transformer架构的视频帧插值(VFI)新方法——VFIformer。传统卷积网络由于局部操作的局限性,在处理大运动场景时表现不佳。VFIformer通过引入跨尺度窗口注意力机制(CSWA),有效扩大了感受野并聚合多尺度信息,从而解决了这一问题。实验表明,VFIformer在多个公开数据集上取得了最先进的性能。此外,文中还进行了详细的消融研究,验证了模型各组件的有效性。 适合人群:计算机视觉领域的研究人员和技术开发者,特别是对视频处理、深度学习和Transformer架构感兴趣的读者。 使用场景及目标:①处理具有大运动场景的视频帧插值任务;②提高视频帧率,减少运动模糊和抖动;③应用于视频压缩、视频修复、慢动作生成等领域。 其他说明:虽然VFIformer在性能上优于现有方法,但计算成本较高。未来工作将探索更高效的实现方式,并扩展模型以支持任意时间点的帧插值。此外,附录提供了更多实现细节和定量对比结果,包括轻量级版本的训练情况。

2025-07-09

一种用于高效视频插帧的新型深度架构提供源码

内容概要:本文提出了一种新型高效的视频帧插值(VFI)网络——IFRNet(Intermediate Feature Refine Network),旨在解决复杂动态场景下的帧插值问题。IFRNet通过单个编码器-解码器架构联合优化中间光流估计和中间特征细化,从而实现快速推理和高精度的帧插值。此外,作者引入了面向任务的光流蒸馏损失(task-oriented flow distillation loss)和特征空间几何一致性损失(feature space geometry consistency loss),以进一步提升模型性能。实验结果表明,IFRNet不仅在多个基准数据集上取得了最先进的VFI准确性,还具有更快的推理速度和更轻量的模型尺寸。 适合人群:计算机视觉领域研究人员、视频处理工程师以及对高效视频帧插值技术感兴趣的开发者。 使用场景及目标:①用于提高低帧率视频的质量,如慢动作生成、新型视图合成和动画创作;②适用于实时应用,如移动设备上的视频编辑和播放,因其具有较快的推理速度和较小的模型参数;③研究面向任务的知识蒸馏方法在深度学习模型中的应用,以改进特定任务的学习效果。 阅读建议:IFRNet的设计理念和技术创新点在于其独特的联合优化机制以

2025-07-08

学习通过自监督提高基于GAN的视频生成的时间连贯性提供源码

内容概要:本文提出了一种基于自监督学习的方法,用于提高生成对抗网络(GAN)在视频生成任务中的时间连贯性。该方法主要针对两个任务:无配对视频翻译(UVT)和视频超分辨率(VSR)。作者引入了时空判别器(spatio-temporal discriminator)和一种新颖的“乒乓”损失(Ping-Pong loss),以确保生成的视频不仅在空间上具有高质量细节,而且在时间维度上保持一致性和自然演变。文中还提出了几种新的度量标准来量化时间连贯性,并通过大量实验验证了所提方法的有效性。; 适合人群:对深度学习特别是生成对抗网络(GAN)、视频处理技术感兴趣的科研人员和工程师。; 使用场景及目标:①研究如何利用自监督学习改进视频生成的时间一致性;②开发能够生成高质量、长时间连贯视频的模型;③评估不同模型在视频超分辨率和无配对视频翻译任务中的表现。; 其他说明:本文提供了详细的实验设置、网络架构和技术细节,并附有补充材料,包括视频片段,以帮助读者更好地理解和复现实验结果。此外,作者还讨论了方法的局限性和未来可能的研究方向。

2025-06-24

【计算机视觉】基于元学习的场景自适应视频帧插值算法:提升多变场景下的帧间插值性能

内容概要:本文提出了一种基于元学习(meta-learning)的场景自适应视频帧插值方法,旨在充分利用测试时可用的额外信息来提升视频帧插值的效果。传统方法难以应对不同视频中的多样运动和遮挡情况,导致单一模型难以泛化到所有视频。本文通过引入元学习,使模型能够在测试阶段快速适应新视频,从而显著提高性能。具体而言,该方法首先利用少量输入帧进行快速参数更新,然后应用于整个视频序列。实验表明,该方法在多个基准数据集上均优于现有方法,特别是在处理大运动场景时表现出色。 适合人群:计算机视觉研究人员、深度学习开发者以及对视频处理技术感兴趣的工程师。 使用场景及目标:①适用于需要高质量视频帧插值的应用场景,如慢动作生成和帧率转换;②目标是提高视频帧插值的质量,尤其是在处理复杂运动和遮挡的情况下;③帮助研究者理解元学习如何应用于低级视觉任务并取得良好效果。 其他说明:本文提出的框架可以轻松集成到现有的视频帧插值网络中,无需更改架构或增加额外参数。此外,作者还提供了源代码和预训练模型以促进复现和进一步研究。实验部分详细分析了不同超参数设置对性能的影响,为后续优化提供了参考。

2025-07-09

【计算机视觉】TimeLens:基于事件相机的视频帧插值技术在高动态场景中的应用与性能提升

内容概要:本文介绍了Time Lens,一种基于事件相机的视频帧插值方法。传统帧插值方法仅依赖于相邻的关键帧进行中间帧生成,但在高动态场景下表现不佳。事件相机能够捕捉像素亮度变化,提供高时间分辨率和低延迟的视觉信息,从而弥补了传统方法的不足。Time Lens结合了合成和光流估计两种插值方法的优点,利用事件数据处理非线性运动和光照变化,实现了高质量的帧插值。实验结果显示,Time Lens在多个基准测试中显著优于现有方法,特别是在处理高动态场景时表现出色。此外,作者还发布了HS-ERGB数据集,用于评估基于事件和帧的视频插值方法。 适合人群:对计算机视觉、视频处理技术感兴趣的科研人员和工程师,特别是关注事件相机和帧插值领域的专业人士。 使用场景及目标:①需要处理高动态场景(如快速运动物体、光照变化)的视频插值任务;②希望提升视频帧率,实现慢动作效果的应用;③研究事件相机与传统帧相机结合的技术方案,推动视频处理技术的发展。 其他说明:Time Lens不仅在合成和光流估计方面表现出色,还通过引入事件数据解决了传统帧插值方法难以处理的问题。该方法在多个公开数据集上进行了验证,证明了其优越性和鲁棒性。此外,发布的HS-ERGB数据集为未来的研究提供了宝贵的资源。

2025-07-09

【计算机视觉】模糊视频帧插值方法研究:联合减少运动模糊与提升帧率的技术方案提供源码

内容概要:本文提出了一种模糊视频帧插值方法(BIN),旨在同时减少运动模糊并提升帧率。现有方法通常将这两个任务分开处理,而本文的方法通过金字塔模块和跨金字塔递归模块联合优化了这两个问题。金字塔模块能够灵活调整空间感受野和时间范围,从而平衡计算复杂度与恢复质量。跨金字塔递归模块则利用ConvLSTM单元传播帧间信息,确保时间一致性。实验结果表明,该方法在多个数据集上优于现有技术。 适合人群:计算机视觉领域的研究人员和技术人员,特别是对视频处理、图像去模糊和帧插值感兴趣的读者。 使用场景及目标:①研究视频处理中的运动模糊和帧率提升问题;②开发高效的视频增强算法,适用于低帧率和模糊输入的视频;③评估和改进基于深度学习的视频处理模型。 其他说明:本文不仅详细介绍了模型架构和训练细节,还提供了开源代码和预训练模型,方便读者进行复现和进一步研究。此外,文中还引入了一个新的评估指标——基于光流估计的运动平滑度,用于衡量合成视频序列的运动一致性。

2025-07-09

XVFI: eXtreme Video Frame Interpolation提供源码

内容概要:本文介绍了针对视频帧插值(VFI)任务提出的高分辨率数据集X4K1000FPS以及一种新的极端VFI网络(XVFI-Net)。X4K1000FPS数据集由4K分辨率、1000fps的视频组成,包含丰富的运动、遮挡和纹理变化,旨在解决现有低分辨率数据集对高分辨率视频处理效果不佳的问题。XVFI-Net采用递归多尺度共享结构,分为双向光流学习模块(BiOF-I和BiOF-T),能够有效捕捉大运动并稳定估计光流。实验结果显示,XVFI-Net在X4K1000FPS和其他基准数据集上均表现出色,尤其在极端运动场景下性能显著优于现有方法。 适合人群:计算机视觉领域的研究人员和工程师,特别是关注视频处理、光流估计和深度学习模型设计的专业人士。 使用场景及目标:①研究和开发针对高分辨率视频的帧插值技术;②提升视频处理系统的性能,特别是在处理快速运动场景时;③评估不同VFI模型在极端条件下的表现,为实际应用提供参考。 阅读建议:本文详细描述了XVFI-Net的设计思路和技术细节,建议读者重点关注模型架构、训练方法和实验结果部分。此外,理解X4K1000FPS数据集的特点及其构建过程对于从事相关研究具有重要意义。所有源代码和数据集已公开,便于读者复现实验并进行进一步探索。

2025-07-09

【视频编码领域】HEVC(高效率视频编码)标准化扩展:多视图、可伸缩及3D视频编码技术的设计与应用

内容概要:本文详细介绍了高效率视频编码(HEVC)标准的扩展工作,涵盖范围扩展、可伸缩性和3D视频编码三个主要方面。HEVC的第一版本已经广泛适用于多种应用,但为了满足更高品质应用的需求,如更高的比特深度、色度采样格式、嵌入式位流可伸缩性、3D视频等,国际标准化委员会正在开发一系列扩展。文章首先概述了HEVC第一版的主要特性和编码工具,然后详细描述了范围扩展(支持4:2:2和4:4:4色度采样格式、更高比特深度、屏幕内容编码等)、可伸缩性扩展(包括空间、SNR和时间可伸缩性)以及3D视频扩展(多视图预测、深度图压缩等)。此外,还讨论了混合架构的应用,使新旧技术能够共存并逐步过渡。 适合人群:对视频编码标准及其扩展感兴趣的科研人员、工程师和研究生。 使用场景及目标:①了解HEVC标准的最新进展和技术细节;②研究如何利用HEVC扩展来提升视频质量和适应更多应用场景;③探索3D视频和多视图编码的具体实现方法。 其他说明:本文由多位视频编码领域的专家共同撰写,基于多个国际标准委员会的工作成果。文中引用了大量文献和技术报告,提供了丰富的实验数据和性能评估,有助于深入理解HEVC扩展的实际效果和潜在优势。

2025-07-07

【计算机视觉】基于不对称融合的感知导向视频帧插值方法PerVFI:解决模糊与重影问题并提升插值质量提供源码

内容概要:本文介绍了一种新的视频帧插值方法——PerVFI(Perception-Oriented Video Frame Interpolation),旨在解决传统方法中常见的模糊和鬼影问题。PerVFI引入了不对称协同融合模块(ASB)和基于归一化流的生成器。ASB利用两帧参考图像中的特征进行不对称融合,其中一帧强调主要内容,另一帧提供补充信息。同时,为了控制融合过程,提出了一种自学习的稀疏准二值掩模。此外,采用归一化流生成器并通过负对数似然损失函数学习输出条件分布,从而生成高质量的中间帧。实验结果表明,PerVFI在感知质量上显著优于现有方法。 适合人群:计算机视觉研究人员、从事视频处理和增强技术开发的工程师、研究生及以上学历的图像处理领域学者。 使用场景及目标:①处理视频中存在较大运动的场景,避免模糊和鬼影现象;②提升视频帧率转换、慢动作渲染等应用中的帧插值质量;③适用于高分辨率视频的帧插值任务,确保视觉效果的一致性和优越性。 其他说明:PerVFI不仅在感知质量方面表现出色,在高分辨率视频上也展现了良好的泛化能力。该方法通过引入稀疏准二值掩模解决了对齐误差带来的问题,并且在训练过程中加入了随机噪声以提高鲁棒性。实验部分包括定量评估、用户研究以及消融实验,全面验证了PerVFI的有效性和优越性。代码已开源,方便研究者和开发者进一步探索和应用。

2025-07-08

【计算机视觉】Direct3D-S2:基于空间稀疏注意力机制的大规模3D生成框架设计与实现【提供GitHub源码】

内容概要:本文介绍了一种名为Direct3D-S2的高效高分辨率3D生成框架。该框架基于稀疏体积表示,旨在解决使用体积表示(如符号距离函数SDF)生成高分辨率3D形状时面临的计算和内存挑战。Direct3D-S2的核心创新是空间稀疏注意力(SSA)机制,它显著提高了扩散变换器(DiT)在稀疏体积数据上的计算效率,实现了3.9倍的前向加速和9.6倍的反向加速。此外,该框架包括一个变分自编码器(VAE),在整个输入、潜在和输出阶段保持一致的稀疏体积格式,从而提高训练效率和稳定性。Direct3D-S2在公共数据集上训练,仅需8个GPU即可在1024³分辨率下进行训练,显著降低了计算成本。 适合人群:对3D生成技术感兴趣的计算机视觉、图形学研究人员及工程师,特别是那些关注高分辨率3D模型生成的从业者。 使用场景及目标:①用于虚拟世界、产品原型设计、游戏开发等领域,直接从图像或文本生成高质量3D模型;②研究和应用高分辨率3D生成技术,探索3D形状生成的新方法;③减少计算资源消耗,提高3D生成模型的训练效率和质量。 其他说明:Direct3D-S2通过引入SSA机制,解决了现有方法在高分辨率3D生成中的计算瓶颈,使得大规模3D生成更加实际和可行。实验结果表明,该框架不仅在生成质量和效率上超越了现有方法,而且大幅减少了所需的硬件资源。项目页面:https://www.neural4d.com/research/direct3d-s2。

2025-07-07

【计算机视觉】基于神经动态图像渲染的空间时间视图合成:复杂动态场景下的高质量新视角生成系统设计

内容概要:本文介绍了一种新的动态图像基于渲染(DynIBaR)方法,用于从单目视频合成复杂动态场景的新视角。现有方法如HyperNeRF和NSFF在处理长时间、复杂运动场景时存在模糊或不准确的问题。DynIBaR采用体积图像基渲染框架,通过聚合附近视图的特征并考虑场景运动,能够合成高质量的新视角。该方法引入了运动轨迹场来高效建模多帧间的场景运动,并提出了跨时间渲染技术以确保时间一致性。此外,DynIBaR还结合静态和动态模型,通过贝叶斯学习框架下的运动分割模块进行监督。实验表明,DynIBaR在多个基准数据集上显著优于现有方法,并能在野外视频中保持高渲染质量。 适合人群:计算机视觉研究人员、图像处理工程师、深度学习从业者。 使用场景及目标:①合成复杂动态场景的高质量新视角;②处理长时间、无约束摄像机轨迹和快速复杂物体运动的视频;③提高动态场景重建的时间一致性和渲染质量。 其他说明:尽管DynIBaR在许多方面表现出色,但它仍有一些局限性,如无法处理极小的快速移动物体以及对某些退化运动模式敏感。此外,渲染静态内容的质量取决于选择的源视图。总体而言,DynIBaR为解决现实世界中的动态场景重建提供了有力工具。

2025-07-04

【计算机视觉】基于时序可变形对齐网络的视频超分辨率技术:TDAN模型设计与性能评估

内容概要:本文提出了一种用于视频超分辨率(VSR)的一阶段时序可变形对齐网络(TDAN)。传统方法通常依赖于光流来对齐参考帧和支持帧,这可能导致图像伪影并影响最终重建的高分辨率(HR)视频帧质量。TDAN则在特征级别上自适应地对齐参考帧和支持帧,无需计算光流。通过从参考帧和支持帧中提取特征,动态预测卷积核的偏移量,TDAN可以将支持帧转换为与参考帧对齐的状态。实验结果表明,TDAN在多个基准数据集上优于现有方法,特别是在处理复杂运动场景时表现出色。 适用人群:从事计算机视觉、深度学习研究的科研人员,尤其是专注于视频处理和超分辨率领域的研究人员和技术开发者。 使用场景及目标:①解决视频超分辨率任务中因相机或物体运动导致的帧间不对齐问题;②提高视频超分辨率模型的性能,特别是在处理复杂运动场景时;③减少传统基于光流的方法中可能出现的图像伪影。 其他说明:TDAN的设计具有较强的泛化能力,不仅适用于视频超分辨率任务,还可以扩展到其他视频修复任务如视频去噪、视频去模糊和视频帧插值等。此外,TDAN采用自监督训练方式,无需额外标注数据,降低了训练难度。实验部分详细对比了TDAN与其他先进方法在不同退化条件下的表现,并通过消融研究验证了各模块的有效性。未来工作将集中在构建更大规模的高分辨率视频数据集,以进一步提升TDAN的性能。

2025-06-24

【3D视频编码】基于支持向量回归的3D视频质量优化与色深联合码率控制技术研究

内容概要:本文提出了一种新的3D视频(彩色加深度格式)编码系统,专注于3D质量优化和色彩与深度组件之间的联合速率控制。该系统利用支持向量回归(SVR)模型预测每帧的最佳比特率分配比例,通过分析色彩和深度图像中的边缘特征来确定最优比特率分配。此外,研究还修改了H.264/SVC JSVM参考软件中的速率控制方案,使其适用于色彩和深度序列的联合速率控制。实验结果显示,该方法能够更精确地进行速率控制,并显著提升3D视觉感知质量。 适合人群:对3D视频编码技术、图像处理、机器学习算法感兴趣的科研人员和技术开发者,特别是那些从事多媒体通信和视频压缩领域的专业人士。 使用场景及目标:①用于3D视频编码过程中,确保在有限的比特率预算下,色彩和深度信息能够得到最优化的分配;②提高3D视频的视觉质量,特别是在色彩和深度信息之间的协调方面;③为后续研究提供参考,如扩展SVR模型的特征集、引入感兴趣区域(ROI)编码等。 其他说明:本文基于H.264/SVC标准平台进行了改进,提出了一个创新的SVR预测模型,通过边缘特征分析来指导比特率分配。实验验证了该方法的有效性和优越性,未来的研究将考虑加入更多类型的图像特征以及针对人类视觉关键区域的优化编码策略。

2025-06-09

【视频处理与质量评估】基于神经网络映射的可变帧延迟视频质量模型(VQM-VFD)设计及应用

内容概要:本文介绍了美国国家电信和信息管理局(NTIA)提出的一种新的视频质量模型——VQM_VFD(Variable Frame Delay)。该模型旨在解决输出视频帧相对于输入视频帧的时间变化延迟对全参考(FR)视频质量测量系统带来的挑战。VQM_VFD通过感知特征提取和神经网络映射,能够准确评估不同分辨率视频的质量。具体来说,VQM_VFD从固定角度范围内的时空(ST)块中提取感知特征,并使用神经网络将这些参数映射到主观质量评分。实验结果表明,VQM_VFD在QCIF到HDTV的不同图像尺寸上与主观质量的相关性达到0.9。此外,文章还讨论了未来改进的方向,如加入色彩失真参数。 适用人群:从事视频编码、传输和解码的技术人员,以及对视频质量评估感兴趣的科研人员。 使用场景及目标:①用于评估经过压缩和传输后视频的质量,特别是在存在时间延迟的情况下;②帮助研究人员理解并改进现有视频质量评估模型;③为视频编解码器开发者提供一种更精确的评估工具。 其他说明:本文由Stephen Wolf和Margaret H. Pinson撰写,发布于2011年9月,属于NTIA技术备忘录系列。文中提到的算法和技术细节基于多个NTIA技术报告和文献,旨在为视频质量测量提供一种更为全面和精确的方法。模型的开发过程中使用了大量的主观测试数据集进行训练和验证,确保了模型的鲁棒性和准确性。未来的工作将集中在增加颜色失真参数等方面以进一步提升模型性能。

2025-06-04

Qwen3 Technical Report

内容概要:本文介绍了Qwen3,这是Qwen系列模型的最新版本。Qwen3是一系列大型语言模型(LLMs),旨在提升性能、效率和多语言能力。它包括密集型和专家混合(MoE)架构的模型,参数规模从0.6亿到2350亿不等。Qwen3的关键创新在于将思考模式(用于复杂、多步推理)和非思考模式(用于快速、基于上下文的响应)集成到统一框架中,消除了在不同模型间切换的需求,并支持根据用户查询或聊天模板动态切换模式。此外,Qwen3引入了思考预算机制,允许用户在推理过程中自适应地分配计算资源,从而在任务复杂度的基础上平衡延迟和性能。通过利用旗舰模型的知识,显著减少了构建小型模型所需的计算资源,同时确保其高性能。实验证明,Qwen3在各种基准测试中表现出色,包括代码生成、数学推理和代理任务等。 适合人群:对大型语言模型及其应用感兴趣的科研人员和技术开发者,特别是那些关注多语言支持、推理能力和高效推理的研究者。 使用场景及目标:①适用于需要处理多种语言和复杂推理任务的应用场景;②帮助研究人员评估和改进大型语言模型的性能;③为开发者提供高效的推理工具,特别是在资源有限的情况下。 阅读建议:Qwen3不仅在技术上有所突破,还提供了丰富的实验数据和详细的训练流程,因此建议读者重点关注其技术创新点以及实验结果,尤其是与前代和其他开源模型的对比部分。同时,结合实际应用场景,理解如何利用思考模式和非思考模式来优化模型性能。

2025-05-21

VITA-Audio: 快速交错跨模态语音生成框架设计与实现处理【提供 GitHub 源码】

内容概要:本文介绍了VITA-Audio,一种用于高效大型语音语言模型的快速交错模态令牌生成框架。VITA-Audio旨在解决现有语音模型在流式环境中生成首个音频令牌时延迟过高的问题。该模型采用轻量级的多模态令牌预测(MCTP)模块,在单次前向传递中生成多个音频令牌,从而显著减少生成第一个音频令牌的时间延迟。此外,VITA-Audio引入了四阶段渐进训练策略,以最小化语音质量损失并实现加速推理。实验结果显示,VITA-Audio在7B参数规模下实现了3到5倍的推理加速,并在自动语音识别(ASR)、文本转语音(TTS)和口语问答(SQA)等多个基准测试中超越了开源模型。 适合人群:对自然语言处理、语音识别和生成技术感兴趣的科研人员及工程师,特别是关注实时语音交互系统性能优化的人群。 使用场景及目标:①适用于需要低延迟、高质量语音生成的应用场景,如智能助手、实时翻译和语音对话系统;②目标是提供一种能够实现实时音频生成且具有极低延迟的端到端语音模型,同时保持较高的语音合成质量。 其他说明:VITA-Audio完全基于开源数据训练,并已公开源代码。该模型不仅在效率方面表现出色,而且在准确性上也优于现有的开源模型,特别是在类似参数规模的情况下。VITA-Audio的设计使得它可以快速生成音频响应,而无需依赖复杂的语义建模能力,从而为实时语音交互提供了新的标准。

2025-05-20

Moshi: a speech-text foundation model for real-time dialogue【提供GitHub源码】

内容概要:本文介绍了Moshi,一种实时全双工语音对话系统,它通过将语音对话建模为语音到语音的生成来解决现有语音对话系统的延迟、文本信息瓶颈和基于回合的建模问题。Moshi由一个7B参数的文本语言模型Helium和一个神经音频编解码器Mimi组成,后者用于将音频离散化为语义和声学标记。为了实现真正的实时对话,Moshi采用了一种多流架构,可以同时处理用户的输入和自身的输出,而不需要明确的发言轮次。此外,Moshi引入了“内心独白”(Inner Monologue)方法,通过预测时间对齐的文本标记来改进生成的语音质量和连贯性。实验表明,Moshi在语音理解和生成方面表现出色,并且可以在保持高质量的同时进行长达5分钟的自然对话。 适合人群:对语音识别、自然语言处理和实时对话系统感兴趣的科研人员和工程师。 使用场景及目标:① 实现低延迟(理论值160ms,实际200ms)的实时语音对话;② 处理自然对话中的重叠发言、打断和插入语;③ 生成高质量、连贯的语音输出,同时保留非语言信息如情感和语气;④ 提供强大的文本理解和推理能力,支持多轮复杂对话。 其他说明:Moshi不仅在语音生成上表现出色,还能够通过调整文本和音频标记之间的延迟来实现流式自动语音识别(ASR)和文本转语音(TTS)。为了确保模型的安全性和一致性,研究人员还进行了毒性分析、重复生成分析以及语音一致性的评估。Moshi的训练数据来自高质量文本源和经过过滤的网络爬虫数据,并使用Fisher数据集进行多流对话的微调。最终,Moshi展示了在多个基准测试中的优异表现,并且能够在各种音频条件下保持稳定的性能。

2025-05-17

【视频质量评估】基于自监督对比学习的高动态范围视频质量无参考评估模型:HIDRO-VQA的设计与应用【提供 GitHub 源码】

内容概要:本文介绍了HIDRO-VQA,一种专为高动态范围(HDR)视频质量评估设计的无参考(NR)模型。HDR视频具有比标准动态范围(SDR)视频更宽广的亮度、细节和色彩范围,随着HDR内容的普及,对能有效解决HDR特有的失真的视频质量评估(VQA)算法的需求日益增长。HIDRO-VQA采用自监督对比微调方法,利用未标记的HDR视频,将SDR领域的质量感知特征迁移到HDR领域。实验结果显示,该模型在唯一公开的HDR VQA数据库LIVE-HDR上取得了最先进的性能。此外,该模型还可以扩展到全参考(FR)VQA设置,同样表现出色。; 适合人群:从事图像处理、计算机视觉或视频质量评估研究的学者与工程师,特别是关注HDR视频质量评估的研究人员。; 使用场景及目标:①研究和开发针对HDR视频的质量评估算法;②提高HDR视频传输过程中质量控制的自动化程度;③为视频流媒体平台提供高质量HDR内容的评估工具;; 其他说明:该模型利用了自监督学习的强大泛化能力,通过有限的未标记HDR数据实现了高效的质量感知特征提取。研究团队还提供了详细的实验结果和消融研究,验证了不同训练参数对模型性能的影响。此外,作者强调了大规模HDR数据库对于未来研究的重要性,并计划公开HIDRO-VQA的源代码,促进相关领域的进一步发展。

2025-05-16

【计算机视觉】基于双解码器的DDColor图像着色方法:实现照片级真实感和语义一致性着色【提供 GitHub 源码】

内容概要:本文介绍了一种名为DDColor的新颖图像着色方法,旨在通过双解码器架构实现逼真且语义合理的图像着色。DDColor采用了一个像素解码器和一个基于查询的色彩解码器。像素解码器负责恢复图像的空间分辨率,而色彩解码器则利用多尺度视觉特征来优化色彩查询,避免了手工设计先验的需求。此外,还引入了一种新的色彩丰富度损失函数,以增强生成结果的色彩鲜艳度。实验结果表明,DDColor在多个基准数据集上均优于现有方法,具有更好的泛化能力和自然的色彩表现。 适合人群:计算机视觉领域的研究人员、开发人员以及对图像处理和深度学习感兴趣的学者和技术人员。 使用场景及目标:①适用于需要自动为黑白照片或灰度图像着色的应用场景;②研究如何通过双解码器架构提高图像着色的质量和语义一致性;③探索如何利用多尺度特征和基于查询的变压器来减少色彩溢出并提升色彩丰富度。 其他说明:该方法在多个公开数据集上进行了验证,包括ImageNet、COCO-Stuff和ADE20K,并展示了优越的性能。此外,DDColor的代码和模型已开源,可供进一步研究和应用。用户研究表明,DDColor在主观偏好方面也优于现有的最新方法。尽管取得了显著进展,但该方法在处理透明或半透明物体时仍存在局限性,未来可以考虑加入更多的用户控制或指导以改进这些复杂场景的表现。

2025-05-14

【视频编码技术】现代软件视频编码器能耗与碳排放评估:编码效率与环境影响的综合分析

【视频编码技术】现代软件视频编码器能耗与碳排放评估:编码效率与环境影响的综合分析

2025-07-21

Multi-resolution encoding and optimization for next generation video compression

多编码意味着以多种空间分辨率和多种比特率对相同内容进行编码。这项工作针对传统自适应比特率(ABR)的比特率,评估了同一视频在2160p、1080p和540p编码下的编码器分析相关性。对一种多分辨率层级多ABR编码方案进行了建模和评估,该方案显著提高了传统ABR编码的计算效率。视频内容首先以较低分辨率和相关的中位比特率进行编码,然后将编码器分析决策(如运动向量和CU块结构)用于同一分辨率层级的其他编码中。接着对分析结果进行外推和优化,以用于更高分辨率的编码。该方案使用x265 HEVC视频编码器进行了验证。与传统的单实例编码方法相比,所提出的多分辨率层级多比特率编码方案总体加速比最高可达2.5倍。此外,这种加速是在编码效率没有大幅损失的情况下实现的。

2025-07-21

无服务器(serverless)架构中利用图形处理单元(GPU)加速高效视频编码(HEVC)的云边缘平台的设计与实现

内容概要:本文探讨了基于GPU加速的无服务器云边缘平台在HTTP自适应流媒体(HAS)视频编码中的应用。研究提出了一种由Knative管理的事件驱动无服务器架构,用于视频编码。文中比较了两种HEVC编码器——仅使用CPU的x265和使用GPU加速的HEVC NVENC,在不同虚拟机配置下的性能表现。实验结果显示,使用GPU加速的HEVC NVENC编码速度比x265快8.3倍,多分辨率场景下编码时间减少了12.4倍。此外,研究还分析了冷启动时间、资源消耗和并发处理能力,验证了GPU加速对视频编码效率的显著提升。 适合人群:从事云计算、边缘计算、视频编码技术的研究人员和工程师,尤其是关注低延迟视频流媒体应用的开发者。 使用场景及目标:①适用于需要高效视频编码和低延迟的实时流媒体应用;②评估不同虚拟化场景下无服务器架构对视频编码性能的影响;③优化基于GPU的无服务器平台配置,以提高视频编码的速度和效率。 其他说明:本文通过详细的实验设计和数据分析,展示了GPU加速在无服务器环境中的优势,为未来的研究提供了有价值的参考。研究还强调了无服务器架构在多媒体流媒体领域的潜力,特别是在边缘计算环境中。未来工作将集中在扩展平台功能,支持更多编码标准(如AV1),并探索360度虚拟现实视频的视场角(FoV)编码。

2025-07-21

【视频处理与传输】基于视频超分辨率的低延迟绿色在线流媒体编码方案:ViSOR系统设计与性能分析

内容概要:本文介绍了ViSOR(视频超分辨率优化编码方案),一种基于视频超分辨率(VSR)技术的低延迟自适应流媒体编码方案。ViSOR旨在优化在线流媒体应用中的比特率阶梯,通过预测最佳编码分辨率来实现最高感知质量,同时确保最大可接受的编码延迟。该方案利用随机森林模型预测VSR后的感知质量和编码时间,从而选择最优分辨率。实验结果显示,与传统的HLS编码相比,ViSOR在保持相同PSNR和VMAF的情况下,平均比特率分别降低了24.65%和32.70%,同时减少了68.21%的编码能耗和79.32%的存储消耗。此外,ViSOR还通过引入JND(最小可觉差)阈值来消除冗余表示,进一步优化了编码效率。 适用人群:从事视频编码、流媒体技术研究或开发的专业人士,特别是对绿色节能技术和视频超分辨率感兴趣的科研人员和工程师。 使用场景及目标:①适用于需要优化编码延迟和比特率的在线流媒体平台;②用于提高低分辨率视频的视觉质量,减少传输带宽和存储成本;③帮助视频服务提供商实现更高效的视频传输,降低服务器端能耗。 其他说明:ViSOR不仅关注编码效率,还考虑了客户端设备的处理能力,特别是GPU加速的VSR技术。未来,ViSOR有望支持更多新兴编解码标准(如VVC),并为不同类型的终端设备定制优化的比特率阶梯,以提升用户的观看体验。

2025-07-21

【多媒体通信】基于表面拟合的视频编解码器性能评估:速率-能耗-失真三维视角下的编码效率优化研究

内容概要:本文探讨了视频编解码器性能评估的新方法,提出了一种基于速率-能量-失真(R-E-D)的三维表示法,通过曲面拟合技术整合编码速率、能耗和失真三个关键参数。传统方法如Bjøntegaard Delta(BD-rate)仅关注速率-失真(R-D),忽略了能耗的重要性。作者使用线性插值、多项式函数等曲面拟合方法,对x264、x265和VVenC三种编码器进行实验,评估不同预设和压缩率下的性能。结果显示,线性插值在支持点和非支持点上均表现出最高精度。通过对R-E-D曲面及其投影的分析,作者发现较新的编码器(如x265和VVenC)在相同比特率-能耗下提供更高的质量,并在相同能耗-失真水平下提供更低的比特率,因此推荐避免使用旧编码器(如x264和早期x265)的慢速预设。 适合人群:从事视频编码研究和开发的技术人员,特别是对能耗优化有需求的研究者和工程师。 使用场景及目标:①评估不同编码器配置在速率、能耗和失真之间的权衡;②选择最优编码器配置以实现高效视频编码;③为手持设备和其他能效敏感应用提供优化建议。 其他说明:本文的研究成果不仅有助于视频编码效率的提升,还为未来研究提供了新的视角,例如探索不同内容对R-E-D曲面的影响以及扩展到其他失真度量标准(如SSIM和VMAF)。此外,该研究得到了德国研究基金会的支持。

2025-07-21

视频压缩基于熵约束神经表示的视频压缩方法研究

内容概要:本文提出了一种基于隐式神经表示(INRs)的视频压缩新方法,通过引入一种紧凑的卷积架构和端到端的熵最小化训练策略,显著提升了视频压缩的效果。传统神经视频表示(NVR)方法在表示时空信息时效率较低,并且在压缩过程中通常采用先拟合网络再进行量化或剪枝的分离策略。本文方法通过联合优化率失真(Rate-Distortion, R-D),实现了更高效的视频表示和压缩。实验结果表明,该方法在UVG数据集上达到了新的最先进水平,首次超越了常用的HEVC基准。 适合人群:对视频压缩技术感兴趣的科研人员、工程师以及从事计算机视觉和深度学习研究的专业人士。 使用场景及目标:①需要高效压缩视频的应用场景,如在线视频平台、视频传输等;②希望理解如何通过神经网络实现视频压缩的研究人员;③探索新型视频编码技术的研发团队。 其他说明:本文不仅提出了新的架构和训练策略,还展示了如何通过熵最小化来改进现有方法。此外,实验部分详细对比了多种压缩方法的性能,证明了所提方法的有效性和优越性。建议读者在实践中结合具体应用场景调整模型参数,以获得最佳效果。

2025-07-21

【多媒体通信】基于JND感知的低延迟编码方案

内容概要:本文介绍了一种针对自适应直播流媒体应用的最优质量和效率低延迟编码方案——JND感知低延迟编码(JALE)。JALE通过联合预测每个视频片段的最佳编码器预设和CPU线程数,基于视频内容复杂度特征、目标编码速度和可用CPU线程总数来优化编码配置。实验结果显示,与HTTP Live Streaming(HLS)标准编码相比,JALE在相同比特率下平均提高了1.32dB PSNR和5.38 VMAF分数,同时存储空间减少了72.70%,使用的CPU线程减少了63.83%,编码时间减少了37.87%。此外,JALE还通过JND阈值移除感知冗余表示,进一步提高编码效率。 适合人群:对视频编码技术有一定了解的研究人员和技术开发者,特别是从事自适应流媒体和实时视频传输领域的专业人员。 使用场景及目标:①用于优化自适应直播流媒体应用中的编码配置,提高编码质量和效率;②减少编码过程中不必要的计算资源消耗,降低存储和传输成本;③通过JND阈值优化,移除感知冗余表示,提升用户体验。 其他说明:本文提出的JALE方案不仅适用于当前的HEVC编码标准,未来还将支持更多编码器预设选项,进一步增强编码灵活性和效率。此外,研究团队计划继续探索存储优化技术和表示消除方法,以提高视频流媒体的整体能源效率和可持续性。

2025-07-21

MPAI-EEV: Standardization Efforts of Artificial Intelligence based End-to-End Video Coding

内容概要:本文介绍了基于人工智能的端到端视频编码标准(MPAI-EEV)的标准化努力。随着人工智能技术的快速发展,MPAI组织正在开发一系列名为MPAI-EEV的标准,旨在利用数据训练的神经网络压缩高保真视频数据所需的比特数。与传统混合框架不同,这种新方法不受传统编码方式的限制,可以实现更高的压缩效率。文章概述了MPAI-EEV的最新进展和技术设计哲学,包括参考模型的编码效率比较,以及一些初步尝试如无人机视频编码。此外,文章还讨论了当前的研究状态和发展时间表,总结了主要技术细节,并提供了进一步研究的参考点。 适用人群:对视频编码技术及其未来发展感兴趣的科研人员、工程师及行业专家。 使用场景及目标:①研究和开发下一代视频编码标准;②评估基于深度学习的视频编码技术性能;③探索无人机视频编码等新兴应用场景;④为视频编码领域的学术研究提供参考和支持。 其他说明:文章强调了神经网络在视频编码中的潜力,但也指出了几个需要解决的问题,如计算复杂度的降低、参数量庞大的标准化问题、模型的泛化能力和解释性、以及数据安全性。未来的研究方向包括提高室内场景的表现、优化帧内编码以及与其他媒体数据标准的协调。总之,本文系统地展示了MPAI-EEV在压缩无人机视频方面取得的成果,为相关领域的未来研究提供了全面的指导。

2025-07-17

【多媒体技术】UVG 4K视频数据集:50/120fps视频编码分析与开发的关键资源

内容概要:本文介绍了由Ultra Video Group (UVG) 开发并公开的UVG数据集,该数据集包含16个4K(3840×2160)测试视频序列,帧率为50或120 fps,格式为8位和10位4:2:0 YUV。这些视频序列由Sony F65摄像机拍摄并转换为YUV格式,存储于http://ultravideo.cs.tut.fi/#testsequences,采用非商业Creative Commons BY-NC许可。UVG数据集在空间和时间感知信息、率失真性能以及编码复杂度方面进行了详细评估,并与现有的HEVC/H.265和VVC/H.266参考视频编解码器进行了比较。研究表明,UVG数据集补充了现有的4K测试集,尤其适用于下一代VVC

2025-07-17

YOLOv13: Real-Time Object Detection with Hypergraph-Enhanced Adaptive Visual Perception提供源码

内容概要:本文介绍了一种先进的实时目标检测模型YOLOv13,它通过引入基于超图的自适应相关性增强机制(HyperACE)克服了现有YOLO系列模型只能建模局部二阶相关性的局限,实现了对复杂场景下多对多高阶相关性的有效捕捉。HyperACE机制利用超图计算自适应探索潜在的高阶相关性,并通过全管道聚合与分配范式(FullPAD)将增强后的特征分布到整个网络,从而显著提升了信息流动和表示协同。此外,YOLOv13采用深度可分离卷积块替代传统大核卷积块,大幅减少了参数量和计算复杂度。实验结果显示,YOLOv13在MS COCO数据集上达到了最先进的性能,同时保持了轻量化。 适合人群:从事计算机视觉研究的专业人士、对实时目标检测技术感兴趣的科研人员以及希望深入了解深度学习模型优化的工程师。 使用场景及目标:适用于需要高效、准确的目标检测应用场景,如工业异常检测、自动驾驶、视频监控等;目标是提高复杂场景下的检测精度,减少计算资源消耗,实现更快更轻量化的模型部署。 其他说明:该模型的代码和模型文件已在GitHub上公开,网址为https://github.com/iMoonLab/yolov13。实验结果表明,YOLOv13相比之前的版本,在不同尺度的模型上均有显著的性能提升,特别是在Nano和Small模型上表现出色。此外,通过消融实验验证了每个提出模块的有效性。

2025-07-11

【计算机视觉】统一任意时间视频帧插值与预测模型uniVIP提供源码

内容概要:本文介绍了uniVIP,一种统一的任意时间视频帧插值和预测模型。传统上,视频帧插值(合成中间帧)和预测(合成后续帧)被视为两个独立任务,分别使用不同的模型架构或训练权重。uniVIP通过扩展基于前向翘曲的插值模型UPR-Net,引入特殊任务编码通道,实现了这两个任务的统一处理。uniVIP不仅能合成任意时间点的帧(包括过去和未来的浮点时间),还能在常见的三帧数据上进行联合训练。实验结果表明,uniVIP在视频插值任务中表现与现有方法相当,在视频预测任务中超越了现有最佳方法。此外,uniVIP是首个能够进行任意时间帧预测的模型。 适合人群:对计算机视觉、深度学习以及视频处理技术感兴趣的科研人员和工程师,特别是从事视频帧插值和预测研究的专业人士。 使用场景及目标:①在视频处理应用中,如视频质量增强、视频压缩、自动驾驶、人类动作预测等领域;②通过uniVIP实现任意时间点的视频帧插值和预测,提高视频处理效率和效果;③减少部署成本并提升多任务学习的泛化能力。 其他说明:uniVIP模型的设计简单但有效,通过对UPR-Net的简单扩展,实现了对任意时间点帧的合成。该模型不仅能在标准测试集上取得优异成绩,还为未来在实际应用场景中的应用提供了可能性。代码已开源,可在GitHub上获取。

2025-07-10

【计算机视觉】FILM:用于大运动场景帧插值的深度学习算法设计与实现提供源码

内容概要:本文介绍了一种名为FILM(Frame Interpolation for Large Motion)的帧插值算法,旨在从近似重复的照片中合成慢动作视频。该方法解决了现有技术在处理大场景运动时遇到的挑战。FILM采用了多尺度特征提取器,共享权重并在不同尺度上进行无尺度双向运动估计,从而有效应对大小运动。为了修复由大运动引起的宽遮挡区域并生成清晰的帧,FILM引入了基于Gram矩阵的损失函数。此外,FILM还提出了一种统一的单阶段架构,简化了训练过程,无需额外的光流或深度网络。实验结果表明,FILM在多个基准测试中优于现有方法,特别是在处理大运动方面表现优异。 适合人群:计算机视觉研究人员、从事图像处理和视频合成的工程师、对深度学习和神经网络感兴趣的学者。 使用场景及目标:①从近似重复的照片中创建高质量的慢动作视频;②处理具有大运动的视频帧插值问题,如电影制作中的特效处理;③研究大运动场景下的图像修复和补全技术。 其他说明:源代码和预训练模型可以在https://film-net.github.io获得。实验结果展示了FILM在处理大运动场景时的优越性能,并提供了详细的实现细节和补充材料。此外,FILM在处理常规运动场景时同样表现出色,能够生成高质量、平滑的视频。

2025-07-09

【计算机视觉】基于统一金字塔递归网络的视频帧插值技术:UPR-Net在复杂运动场景下的高效帧合成与优化种名为UPR提供源码

内容概要:本文介绍了一种新型的统一金字塔递归网络(UPR-Net),用于视频帧插值。UPR-Net结合了双向光流估计和前向扭曲的帧合成,在金字塔框架中利用轻量级递归模块进行迭代优化。该网络能够在保持极低参数量(1.7M)的同时,在多个基准测试中表现出色,尤其在大运动场景下具有显著优势。文章还展示了UPR-Net在不同分辨率下的性能表现,并通过消融实验验证了各个设计选择的有效性。 适合人群:从事计算机视觉、深度学习领域的研究人员和技术人员,特别是对视频处理和帧插值感兴趣的从业者。 使用场景及目标:①处理高分辨率视频中的复杂运动场景;②提高视频帧插值的质量和效率;③适用于需要实时处理和低资源消耗的应用,如移动设备上的视频处理。 其他说明:UPR-Net不仅在低分辨率数据集上训练后能很好地推广到高分辨率测试集中,而且支持任意时间点的多帧插值。此外,作者计划在未来工作中探索更多相关问题,如使用预训练的光流模型替代当前的运动估计器,以及研究多帧插值训练是否有助于提升测试时的表现。

2025-07-10

【计算机视觉】基于解缠运动建模的视频帧插值方法MoMo:提升感知质量与计算效率提供源码

内容概要:本文介绍了一种名为MoMo的解耦运动建模方法,用于视频帧插值(VFI)。MoMo专注于中间运动的建模而非直接像素生成,采用两阶段训练策略。第一阶段训练帧合成网络和光流模型,第二阶段引入运动扩散模型生成双向光流图。该方法首次将生成模型应用于VFI中的光流建模,显著提升了视觉质量并减少了计算需求。实验结果表明,MoMo在多个基准测试中取得了最佳表现,特别是在感知度量方面表现出色。 适合人群:对计算机视觉、视频处理和深度学习感兴趣的科研人员和工程师。 使用场景及目标:①需要高质量视频帧插值的应用,如慢动作生成、视频压缩和动画制作;②希望提高视频流畅性和图像清晰度的研究和开发项目;③探索生成模型在视频处理任务中的应用潜力。 其他说明:MoMo通过引入新颖的U-Net架构和凸上采样层,实现了高效的光流预测。相比现有方法,MoMo在保持高视觉质量的同时,大幅减少了运行时间和计算资源的需求。代码已开源,方便研究者和开发者进一步探索和改进。

2025-07-10

【计算机视觉】动态视频帧插值与难度预评估结合:提升视频帧插值的效率与准确性

内容概要:本文介绍了一种集成难度预评估的动态视频帧插值(Dynamic VFI)方法。现有VFI模型难以在准确性和效率之间取得良好平衡:快速模型往往准确性差,而高精度模型通常运行缓慢。为此,作者提出了一种结合难度评估与视频帧插值的新方法。首先利用预评估模型测量输入帧的插值难度级别,然后动态选择合适的VFI模型生成插值结果。此外,还收集并标注了一个大规模的VFI难度评估数据集用于训练预评估模型。实验表明,该方法可以显著改善VFI的准确性和效率之间的权衡。 适合人群:对计算机视觉、深度学习、视频处理领域感兴趣的科研人员和工程师,特别是关注视频帧插值技术的研究者。 使用场景及目标:①适用于需要高效且高质量视频帧插值的应用场景,如慢动作视频生成、视频编辑、智能显示设备等;②旨在提高工业产品中视频帧插值的性能,特别是对于具有较大运动或复杂纹理的困难样本,同时保持简单样本的高效处理。 其他说明:该研究不仅提出了一个新的动态VFI框架,还贡献了一个大规模的VFI难度评估数据集,有助于推动相关领域的进一步发展。VFI-DPA模型作为一个轻量级插件,能够灵活地与其他VFI模型结合使用,以适应不同应用场景的需求。在实验部分,作者展示了所提方法在多个数据集上的优越表现,并通过消融实验验证了各组件的有效性。

2025-07-09

视频处理基于深度级联网络结构的视频帧插值方法研究:提升帧率转换与运动模糊减少的效果

内容概要:本文提出了一种用于视频帧插值的深度级联网络结构。视频帧插值技术旨在通过插入中间帧将低帧率视频转换为高帧率视频,广泛应用于视频帧率转换和减少运动模糊伪影。传统方法主要集中在准确的运动估计上,而基于卷积神经网络(CNN)的方法近年来取得了显著进展。本文详细分析了现有方法的优点与局限,并提出了由三个自编码器网络组成的级联系统,包括初始帧插值网络和优化网络。实验结果表明,所提出的级联结构在定量和定性评估方面均优于现有最先进方法。 适合人群:计算机视觉和图像处理领域的研究人员和技术人员,特别是对视频处理、深度学习及卷积神经网络有研究兴趣的专业人士。 使用场景及目标:①适用于需要提高视频质量或改变视频帧率的应用场景;②解决视频处理中常见的挑战,如大遮挡区域、快速运动物体等;③通过深度学习改进视频帧插值的效果,为后续的研究提供参考。 其他说明:该研究不仅在多个数据集上进行了广泛的性能测试,还探讨了不同网络组件组合的影响。尽管所提方法在性能上有明显优势,但其计算复杂度较高,未来工作将致力于开发更加紧凑且可端到端训练的网络结构以降低运行时间和内存消耗。

2025-07-09

【计算机视觉】基于轨迹感知Transformer的视频帧插值模型设计:提高复杂运动场景下的插值精度与鲁棒性

内容概要:本文提出了一种新的轨迹感知Transformer(TTVFI),用于视频帧插值(VFI)。现有的VFI方法通常采用两步解决方案:基于光流的运动估计和通过深度神经合成网络融合扭曲像素。然而,这种方法可能导致新帧的扭曲特征不对齐,尤其是在复杂运动情况下。TTVFI通过引入轨迹感知Transformer来解决这一问题,它将不一致运动的扭曲特征表示为查询标记,将原始连续帧的相关区域表示为键和值,通过自注意力机制沿轨迹融合原始特征到中间帧。实验结果表明,TTVFI在四个广泛使用的VFI基准上优于现有方法。 适合人群:计算机视觉领域的研究人员和技术开发者,尤其是对视频处理、深度学习和Transformer架构有一定了解的人士。 使用场景及目标:①适用于需要高质量视频帧插值的应用,如慢动作视频生成、帧率提升、视频压缩和视图合成;②旨在提高视频帧插值的准确性,减少因不一致运动导致的扭曲和模糊。 其他说明:TTVFI通过多尺度融合和注意力机制改进了特征表示,增强了对复杂运动场景的适应能力。该方法不仅在标准数据集上表现优异,还展示了强大的泛化能力。未来工作将集中在扩展跨帧运动轨迹建模和将轨迹感知Transformer应用于更多低级视觉任务。

2025-07-09

【计算机视觉】基于流引导的可变形补偿网络的视频帧插值方法研究与实现

内容概要:本文提出了一种用于视频帧插值(VFI)的流引导可变形补偿网络(FGDCN)。该方法将帧采样过程分解为两个步骤:流步和变形步。流步采用粗到精的流估计网络直接估计中间流并合成锚帧;变形步则利用金字塔可变形补偿网络来弥补流步中丢失的细节。为了确保流估计的准确性,引入了蒸馏损失和任务导向损失进行监督。此外,还提出了金字塔重建损失,从图像和频率域监督模型。实验结果显示,FGDCN在多个数据集上表现出色,参数量较少。 适合人群:计算机视觉领域的研究人员和技术人员,尤其是对视频帧插值、光流估计和可变形卷积感兴趣的从业者。 使用场景及目标:①用于视频处理和增强任务,如提高视频帧率、修复损坏视频等;②研究和开发更高效的视频帧插值算法,特别是在处理复杂运动场景时。 其他说明:FGDCN结合了基于流的方法和基于可变形卷积(DConv)的方法,克服了单一模型的局限性,提升了对复杂运动的处理能力。实验结果表明,该方法不仅在性能上优于现有方法,而且具有更高的计算效率。此外,文章详细介绍了模型架构、训练策略以及不同损失函数的作用,为后续研究提供了有价值的参考。

2025-07-09

【计算机视觉】基于边缘感知网络的视频帧插值技术:减少运动模糊并提升插值帧质量的研究与应用种名为Edge-A

内容概要:本文提出了一种基于边缘感知网络(EA-Net)的视频帧插值方法,旨在通过整合边缘信息来减少大运动和遮挡导致的图像模糊,提高插值帧的质量。EA-Net采用端到端架构,分为两个阶段:边缘引导的光流估计和边缘保护的帧合成。光流估计阶段引入了三种边缘感知机制(增强、连接、双流),以强调帧边缘并提高光流图的准确性。帧合成阶段则设计了光流细化模块和注意力模块,分别用于优化光流图和自适应调节双向光流图的权重。此外,通过帧和边缘判别器进行对抗训练,进一步增强了合成帧的真实性和清晰度。实验结果表明,EA-Net在单帧和多帧插值任务上均优于现有方法。 适合人群:从事计算机视觉、视频处理及相关领域的研究人员和技术人员,特别是对视频帧插值技术感兴趣的读者。 使用场景及目标:①适用于需要提升视频质量的任务,如动画制作、高速摄影、慢动作生成等;②通过边缘感知机制提高光流估计的准确性,从而改善插值帧的质量,特别是在物体边界处减少模糊和伪影;③在单帧和多帧插值任务中提供更高的PSNR和SSIM指标。 其他说明:EA-Net的优势在于其紧凑的架构,不需要预训练模型或额外注释数据,同时在多个基准数据集上的表现优于复杂结构的方法。实验结果不仅验证了边缘信息的重要性,还展示了该方法在实际应用中的潜力。

2025-07-09

【计算机视觉】基于3D卷积神经网络的视频帧插值非线性运动估计:多帧输入的自适应像素级非线性运动建模方法设计

内容概要:本文提出了一种基于3D卷积神经网络的空间时间卷积方法,用于视频帧插值任务。该方法利用四个连续视频帧之间的双向光流和遮挡图作为输入,通过3D CNN预测每个像素的非线性运动模型。该模型能够自适应选择线性和二次运动模型,并通过反向光流估计、运动细化和融合掩码模块最终生成高质量的插值帧。实验表明,该方法在多个公开数据集上达到了最先进的性能。 适合人群:计算机视觉领域的研究人员和工程师,尤其是对视频处理和深度学习技术有一定了解的人群。 使用场景及目标:①适用于需要提升视频帧率的应用,如慢动作视频生成、视频压缩解压缩框架、从GIF图像生成短视频等;②旨在提高视频帧插值的质量,特别是在处理复杂非线性运动时;③为视频帧插值提供一种新的高效解决方案,能够在保持低参数量的同时实现高性能。 其他说明:该研究不仅在多个数据集上验证了其方法的有效性,还进行了详细的消融实验,探讨了不同模块(如BFE、MR、BME)的重要性以及不同输入特征(RGB与光流+遮挡图)的影响。此外,作者指出未来可以进一步探索将RGB帧作为输入以改善性能,并研究更高阶的运动建模方法。

2025-07-09

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除