2025.06.25【微生物】|Emu工具安装与使用详解:全长16S扩增子微生物丰度分析

一、Emu简介

Emu采用贝叶斯方法,针对高错误率的全长16S/18S扩增子数据优化,能够输出物种丰度表和详细分类注释,适用于微生物多样性和群落结构研究。


二、安装Emu

1. 环境准备

建议使用conda创建独立环境,避免依赖冲突:

conda create -n emu_env python=3.8
conda activate emu_env

2. 安装Emu

直接通过pip安装最新版Emu:

pip install emu

如需复现官方环境,可下载environment.yml文件并用conda安装:

conda env create -f environment.yml
conda activate emu

三、数据库准备

Emu支持多种数据库,包括官方预构建的SILVA、RDP、UNITE等。推荐使用SILVA全长16S数据库。

1. 下载预构建数据库

以SILVA为例,先安装osfclient:

pip install osfclient

下载并解压数据库:

export EMU_DATABASE_DIR=/your/path/to/emu_db
mkdir -p ${EMU_DATABASE_DIR}
cd ${EMU_DATABASE_DIR}
export EMU_PREBUILT_DB='silva'
osf -p 56uf7 fetch osfstorage/emu-prebuilt/${EMU_PREBUILT_DB}.tar
tar -xvf ${EMU_PREBUILT_DB}.tar

2. 使用自定义数据库(可选)

如需自建数据库,参考官方命令:

emu build-database <db_name> --sequences <database.fasta> --seq2tax <seq2taxid.map> --ncbi-taxonomy <dir-to-names/nodes.dmp>

四、Emu基本用法

1. 单样本分析

假设你的ONT全长16S扩增子数据为sample1.fastq,数据库路径为${EMU_DATABASE_DIR}

emu abundance --db ${EMU_DATABASE_DIR} --threads 8 --fastq sample1.fastq --output-dir emu_output/
  • --db:数据库目录
  • --threads:并行线程数
  • --fastq:输入fastq文件
  • --output-dir:输出目录

2. 多样本分析

export EMU_DATABASE_DIR=/your/path/to/emu_db
OUTPUT_DIR=/path/to/emu_output
FASTQ_DIR=/path/to/fastq

mkdir -p ${OUTPUT_DIR}

for fq in ${FASTQ_DIR}/*.fastq
do
  sample=$(basename $fq .fastq)
  emu abundance --db ${EMU_DATABASE_DIR} --threads 8 --fastq $fq --output-dir ${OUTPUT_DIR}/${sample}
done

emu combine-outputs ${OUTPUT_DIR} species。

3. 结果文件说明

  • abundance.tsv:物种丰度表(相对丰度)
  • abundance.tax.tsv:带详细分类注释的丰度表
  • abundance.reads.tsv:每条reads的物种分配结果

五、常用功能扩展

1. 按分类等级合并丰度(如属、科等)

emu collapse-taxonomy <file_path> <rank>
# 例如:emu collapse-taxonomy emu_output/abundance.tax.tsv genus

2. 合并多个样本的丰度表

emu combine-outputs <directory_path> <rank>
# 例如:emu combine-outputs emu_output/ genus

六、下游分析建议

  • 可用R、Excel等工具对abundance.tsv进行多样性分析、可视化(如柱状图、PCA等)。
  • 丰度表可直接用于群落结构比较、统计分析等。

七、参考文献与资源


🌟 非常感谢您抽出宝贵的时间阅读我的文章。如果您觉得这篇文章对您有所帮助,或者激发了您对生物信息学的兴趣,我诚挚地邀请您:

👍 点赞这篇文章,让更多人看到我们共同的热爱和追求。

🔔 关注我的账号,不错过每一次知识的分享和探索的旅程。

📢 您的每一个点赞和关注都是对我最大的支持和鼓励,也是推动我继续创作优质内容的动力。

📚 我承诺,将持续为您带来深度与广度兼具的生物信息学内容,让我们一起在知识的海洋中遨游,发现更多未知的奇迹。

💌 如果您有任何问题或想要进一步交流,欢迎在评论区留言,我会尽快回复您。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

穆易青

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值