文章目录
一、Emu简介
Emu采用贝叶斯方法,针对高错误率的全长16S/18S扩增子数据优化,能够输出物种丰度表和详细分类注释,适用于微生物多样性和群落结构研究。
二、安装Emu
1. 环境准备
建议使用conda创建独立环境,避免依赖冲突:
conda create -n emu_env python=3.8
conda activate emu_env
2. 安装Emu
直接通过pip安装最新版Emu:
pip install emu
如需复现官方环境,可下载environment.yml文件并用conda安装:
conda env create -f environment.yml
conda activate emu
三、数据库准备
Emu支持多种数据库,包括官方预构建的SILVA、RDP、UNITE等。推荐使用SILVA全长16S数据库。
1. 下载预构建数据库
以SILVA为例,先安装osfclient:
pip install osfclient
下载并解压数据库:
export EMU_DATABASE_DIR=/your/path/to/emu_db
mkdir -p ${EMU_DATABASE_DIR}
cd ${EMU_DATABASE_DIR}
export EMU_PREBUILT_DB='silva'
osf -p 56uf7 fetch osfstorage/emu-prebuilt/${EMU_PREBUILT_DB}.tar
tar -xvf ${EMU_PREBUILT_DB}.tar
2. 使用自定义数据库(可选)
如需自建数据库,参考官方命令:
emu build-database <db_name> --sequences <database.fasta> --seq2tax <seq2taxid.map> --ncbi-taxonomy <dir-to-names/nodes.dmp>
四、Emu基本用法
1. 单样本分析
假设你的ONT全长16S扩增子数据为sample1.fastq
,数据库路径为${EMU_DATABASE_DIR}
:
emu abundance --db ${EMU_DATABASE_DIR} --threads 8 --fastq sample1.fastq --output-dir emu_output/
--db
:数据库目录--threads
:并行线程数--fastq
:输入fastq文件--output-dir
:输出目录
2. 多样本分析
export EMU_DATABASE_DIR=/your/path/to/emu_db
OUTPUT_DIR=/path/to/emu_output
FASTQ_DIR=/path/to/fastq
mkdir -p ${OUTPUT_DIR}
for fq in ${FASTQ_DIR}/*.fastq
do
sample=$(basename $fq .fastq)
emu abundance --db ${EMU_DATABASE_DIR} --threads 8 --fastq $fq --output-dir ${OUTPUT_DIR}/${sample}
done
emu combine-outputs ${OUTPUT_DIR} species。
3. 结果文件说明
abundance.tsv
:物种丰度表(相对丰度)abundance.tax.tsv
:带详细分类注释的丰度表abundance.reads.tsv
:每条reads的物种分配结果
五、常用功能扩展
1. 按分类等级合并丰度(如属、科等)
emu collapse-taxonomy <file_path> <rank>
# 例如:emu collapse-taxonomy emu_output/abundance.tax.tsv genus
2. 合并多个样本的丰度表
emu combine-outputs <directory_path> <rank>
# 例如:emu combine-outputs emu_output/ genus
六、下游分析建议
- 可用R、Excel等工具对
abundance.tsv
进行多样性分析、可视化(如柱状图、PCA等)。 - 丰度表可直接用于群落结构比较、统计分析等。
七、参考文献与资源
🌟 非常感谢您抽出宝贵的时间阅读我的文章。如果您觉得这篇文章对您有所帮助,或者激发了您对生物信息学的兴趣,我诚挚地邀请您:
👍 点赞这篇文章,让更多人看到我们共同的热爱和追求。
🔔 关注我的账号,不错过每一次知识的分享和探索的旅程。
📢 您的每一个点赞和关注都是对我最大的支持和鼓励,也是推动我继续创作优质内容的动力。
📚 我承诺,将持续为您带来深度与广度兼具的生物信息学内容,让我们一起在知识的海洋中遨游,发现更多未知的奇迹。
💌 如果您有任何问题或想要进一步交流,欢迎在评论区留言,我会尽快回复您。