Handling outliers in non-blind image deconvolution论文阅读

1. 研究目标与实际意义

目标:解决非盲反卷积(Non-Blind Deconvolution)中因异常值(Outliers)(如像素饱和、非高斯噪声)导致的振铃效应(Ringing Artifacts)问题。
图1
(a) 饱和;(d) 均匀噪声;(f) 非线性响应

实际问题:传统线性模糊模型 b = k ∗ l + n b = k * l + n b=kl+n 在实际成像中常被异常值破坏,导致即使模糊核 k k k 准确,反卷积结果仍出现严重伪影。
产业意义:提升图像去模糊系统的鲁棒性,对摄影、医学成像、安防监控等领域的高质量图像恢复至关重要。


2. 创新方法:基于EM的异常值建模

2.1 新模糊模型

论文提出非线性模糊模型,引入剪切函数(Clipping Function) c ( ⋅ ) c(\cdot) c() 动态范围约束:
b = c ( k ∗ l ) + n ( 2 ) b = c(k * l) + n \quad (2) b=c(kl)+n(2)
其中:

  • n n n 为噪声:内点(Inliers)服从高斯分布,外点(Outliers)服从均匀分布(因异常来源复杂)。
  • c ( u ) = { 0 if  u < 0 u if  0 ≤ u ≤ 1 1 if  u > 1 c(u) = \begin{cases} 0 & \text{if } u < 0 \\ u & \text{if } 0 \leq u \leq 1 \\ 1 & \text{if } u > 1 \end{cases} c(u)= 0u1if u<0if 0u1if u>1。该模型的核心创新在于:
  • 动态范围截断:传感器物理限制导致像素值被剪切至 [ 0 , 1 ] [0,1] [0,1]
  • 噪声分离 n n n 包含内点(高斯噪声)和外点(均匀噪声)的混合

代码实现deconv_outlier.m 行 52-53):

ww(bb>1) = 0;  % 剪切上界:f_x>1 时强制设为外点 (E[m_x]=0)
ww(bb<0) = 0;  % 剪切下界:f_x<0 时强制设为外点

此处 bb = fftconv(latent_w, psf) 计算当前潜像的模糊结果 ( k ∗ l ) x (k*l)_x (kl)x(即 f x f_x fx)。该操作动态检测超出动态范围 [ 0 , 1 ] [0,1] [0,1] 的像素,并在后续优化中将其排除(权重 w x m = 0 w_x^m=0 wxm=0)。

2.1.1 目标函数
  • 二元掩码 m x m_x mx:标识像素是否为内点( m x = 1 m_x = 1 mx=1)或外点( m x = 0 m_x = 0 mx=0)。
  • 目标函数(MAP估计)
    l MAP = argmax ⁡ l ∑ m ∈ M p ( b ∣ m , k , l ) p ( m ∣ k , l ) p ( l ) ( 4 ) l_{\text{MAP}} = \underset{l}{\operatorname{argmax}} \sum_{m \in \mathcal{M}} p(b \mid m, k, l) p(m \mid k, l) p(l) \quad (4) lMAP=largmaxmMp(bm,k,l)p(mk,l)p(l)(4)
  • 先验与似然
    • 图像先验 p ( l ) p(l) p(l):稀疏先验(Levin et al.):
      ϕ ( l ) = ∑ x ( ∣ ∇ h l x ∣ α + ∣ ∇ v l x ∣ α ) , α = 0.8 ( 5 ) \phi(l) = \sum_x \left( |\nabla^h l_x|^\alpha + |\nabla^v l_x|^\alpha \right), \quad \alpha=0.8 \quad (5) ϕ(l)=x(h<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

青铜锁00

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值