Handling outliers in non-blind image deconvolution
1. 研究目标与实际意义
目标:解决非盲反卷积(Non-Blind Deconvolution)中因异常值(Outliers)(如像素饱和、非高斯噪声)导致的振铃效应(Ringing Artifacts)问题。
(a) 饱和;(d) 均匀噪声;(f) 非线性响应
实际问题:传统线性模糊模型 b = k ∗ l + n b = k * l + n b=k∗l+n 在实际成像中常被异常值破坏,导致即使模糊核 k k k 准确,反卷积结果仍出现严重伪影。
产业意义:提升图像去模糊系统的鲁棒性,对摄影、医学成像、安防监控等领域的高质量图像恢复至关重要。
2. 创新方法:基于EM的异常值建模
2.1 新模糊模型
论文提出非线性模糊模型,引入剪切函数(Clipping Function) c ( ⋅ ) c(\cdot) c(⋅) 动态范围约束:
b = c ( k ∗ l ) + n ( 2 ) b = c(k * l) + n \quad (2) b=c(k∗l)+n(2)
其中:
- n n n 为噪声:内点(Inliers)服从高斯分布,外点(Outliers)服从均匀分布(因异常来源复杂)。
- c ( u ) = { 0 if u < 0 u if 0 ≤ u ≤ 1 1 if u > 1 c(u) = \begin{cases} 0 & \text{if } u < 0 \\ u & \text{if } 0 \leq u \leq 1 \\ 1 & \text{if } u > 1 \end{cases} c(u)=⎩ ⎨ ⎧0u1if u<0if 0≤u≤1if u>1。该模型的核心创新在于:
- 动态范围截断:传感器物理限制导致像素值被剪切至 [ 0 , 1 ] [0,1] [0,1]
- 噪声分离: n n n 包含内点(高斯噪声)和外点(均匀噪声)的混合
代码实现(deconv_outlier.m
行 52-53):
ww(bb>1) = 0; % 剪切上界:f_x>1 时强制设为外点 (E[m_x]=0)
ww(bb<0) = 0; % 剪切下界:f_x<0 时强制设为外点
此处 bb = fftconv(latent_w, psf)
计算当前潜像的模糊结果 ( k ∗ l ) x (k*l)_x (k∗l)x(即 f x f_x fx)。该操作动态检测超出动态范围 [ 0 , 1 ] [0,1] [0,1] 的像素,并在后续优化中将其排除(权重 w x m = 0 w_x^m=0 wxm=0)。
2.1.1 目标函数
- 二元掩码 m x m_x mx:标识像素是否为内点( m x = 1 m_x = 1 mx=1)或外点( m x = 0 m_x = 0 mx=0)。
- 目标函数(MAP估计):
l MAP = argmax l ∑ m ∈ M p ( b ∣ m , k , l ) p ( m ∣ k , l ) p ( l ) ( 4 ) l_{\text{MAP}} = \underset{l}{\operatorname{argmax}} \sum_{m \in \mathcal{M}} p(b \mid m, k, l) p(m \mid k, l) p(l) \quad (4) lMAP=largmaxm∈M∑p(b∣m,k,l)p(m∣k,l)p(l)(4) - 先验与似然:
- 图像先验 p ( l ) p(l) p(l):稀疏先验(Levin et al.):
ϕ ( l ) = ∑ x ( ∣ ∇ h l x ∣ α + ∣ ∇ v l x ∣ α ) , α = 0.8 ( 5 ) \phi(l) = \sum_x \left( |\nabla^h l_x|^\alpha + |\nabla^v l_x|^\alpha \right), \quad \alpha=0.8 \quad (5) ϕ(l)=x∑(∣∇h<
- 图像先验 p ( l ) p(l) p(l):稀疏先验(Levin et al.):