
Redis
文章平均质量分 82
Redis
程序猿Mr.wu
最大心愿就是少掉头发
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
基于 Java + Redis 布隆过滤器实现高性能黑名单功能
本文提出一种基于布隆过滤器的高效黑名单系统实现方案,针对传统黑名单机制在数据量庞大时面临的内存和查询效率问题。通过结合Java语言和Redis,利用布隆过滤器的空间效率优势和快速查询特性,构建了高性能、低资源消耗的黑名单系统。文章详细介绍了布隆过滤器原理、参数计算方法、Java实现细节,以及数据持久化策略和系统优化方案。该方案采用"布隆过滤器+数据库"的双重机制,既保证了查询效率,又确保了数据可靠性,适用于处理千万级以上的黑名单数据,有效解决恶意请求等问题。原创 2025-07-07 14:19:29 · 2142 阅读 · 0 评论 -
【Redis 分布式锁血案】主节点挂了还没释放锁怎么办?这才是正确的解决姿势!
传统Redis单节点锁存在主从切换导致锁失效的风险(异步复制机制造成)。解决方案包括:1️⃣ RedLock算法:通过多个独立Redis节点投票机制确保锁一致性,推荐使用Redisson实现2️⃣ Zookeeper强一致锁:基于CP模型提供更高可靠性3️⃣ 业务兜底机制:结合幂等校验、锁续命等策略。注意避免锁误删、忽略过期时间等常见错误。不同场景选择方案:高性能场景用RedLock、强一致性需求用Zookeeper、简单场景可用Redis单实例最终建议:分布式锁需配合幂等、补偿等机制形成完整解决方案原创 2025-07-02 21:23:09 · 678 阅读 · 0 评论 -
一文搞懂 Redis 缓存击穿、穿透、雪崩及解决方案!含完整代码示例
Redis缓存三大问题解决方案摘要 缓存穿透(访问不存在数据):采用缓存空值或布隆过滤器拦截无效请求,避免数据库压力。 缓存击穿(热点数据失效):通过互斥锁机制,防止大量并发请求同时访问失效的热点数据。 缓存雪崩(批量缓存失效):设置随机过期时间、数据预热和多级缓存策略,分散缓存重建压力。 核心区别:穿透是数据不存在,击穿是热点数据失效,雪崩是批量缓存失效。解决方案包括空值缓存、布隆过滤器、互斥锁、随机TTL等。实际项目中建议结合多种防御措施,并加入限流机制提升系统稳定性。原创 2025-07-01 07:15:00 · 446 阅读 · 0 评论 -
《Redis 为什么是单线程还能那么快?原因超乎你想象!》
Redis采用单线程核心数据处理模型,配合I/O多路复用机制实现高性能:1)全内存操作避免磁盘I/O瓶颈;2)精妙优化的数据结构设计;3)单线程无锁避免竞争开销;4)基于epoll的事件驱动机制高效处理海量连接;5)jemalloc内存管理减少碎片。Redis6.0虽引入网络I/O多线程,但核心命令处理仍保持单线程以确保线程安全。这种架构设计在避免锁竞争和上下文切换的同时,充分发挥内存操作优势,实现十万级QPS的高吞吐量。原创 2025-06-29 09:28:59 · 851 阅读 · 0 评论 -
Redis ZSet 数据结构深度解析:原理、实现与实战全揭密!
Redis ZSet(有序集合)是一种强大的数据结构,结合了Set的成员唯一性和Score排序特性。它由哈希表和跳表组合实现,支持高效的范围查询和排序操作。Redis 7.0取消了ziplist编码,统一采用跳表结构。核心命令包括ZADD、ZRANGE等,适用于排行榜、延时队列等场景。通过示例代码展示了Java客户端Jedis如何操作ZSet,实现积分排名和延迟任务处理。ZSet的自动排序和高效查询使其成为Redis中处理有序数据的理想选择。原创 2025-06-28 08:02:07 · 908 阅读 · 0 评论 -
基于Redis分布锁+事务补偿解决数据不一致性问题
本文介绍一个基于Redis实现的分布式设备库存服务方案,通过分布式锁、重试机制和事务补偿等关键技术,保证在并发场景下库存操作的原子性和一致性。该方案适用于物联网设备管理、分布式资源调度等场景。原创 2025-03-21 19:18:09 · 580 阅读 · 0 评论 -
Redis和Jedis的区别
总的来说,Redis 是一个服务,而 Jedis 是一个帮助 Java 开发者使用 Redis 的工具在CSDN上,一键三连是对作者辛勤创作的最好鼓励!💖🔝🔄。原创 2024-10-16 16:30:00 · 862 阅读 · 0 评论