题目背景
HKE 考完 GDOI 之后跟他的神犇小伙伴们一起去爬山。
题目描述
他在地形图上标记了 N 个点,每个点 Pi 都有一个坐标 (xi,yi,zi)。所有点对中,高度值 z 不会相等。HKE 准备从最低的点爬到最高的点,他的攀爬满足以下条件:
(1) 经过他标记的每一个点;
(2) 从第二个点开始,他经过的每一个点高度 z 都比上一个点高;
(3) HKE 会飞,他从一个点 Pi 爬到 Pj 的距离为两个点的欧几里得距离。即,(Xi−Xj)2+(Yi−Yj)2+(Zi−Zj)2
现在,HKE 希望你能求出他攀爬的总距离。
输入格式
第一行,一个整数 N 表示地图上的点数。
接下来 N 行,三个整数 xi,yi,zi 表示第 i 个点的坐标。
输出格式
一个实数,表示 HKE 需要攀爬的总距离(保留三位小数)
输入输出样例
输入 #1复制
5 2 2 2 1 1 1 4 4 4 3 3 3 5 5 5
输出 #1复制
6.928
说明/提示
对于100%的数据,1≤N≤50000,答案的范围在 double 范围内。
代码:
#include <bits/stdc++.h>
using namespace std;
const int MAXN = 50005;
struct Point {
double x, y, z;
} points[MAXN];
bool compare(const Point &a, const Point &b) {
return a.z < b.z;
}
double calculateDistance(const Point &a, const Point &b) {
double dx = a.x - b.x;
double dy = a.y - b.y;
double dz = a.z - b.z;
return sqrt(dx * dx + dy * dy + dz * dz);
}
int main() {
int N;
scanf("%d", &N);
for (int i = 0; i < N; ++i) {
scanf("%lf %lf %lf", &points[i].x, &points[i].y, &points[i].z);
}
sort(points, points + N, compare);
double total_distance = 0.0;
for (int i = 0; i < N - 1; ++i) {
total_distance += calculateDistance(points[i], points[i + 1]);
}
printf("%.3lf\n", total_distance);
return 0;
}