一.常见模型评价指标简要说明
1.混淆矩阵
混淆矩阵是真实值和预测值的交叉表通过混淆矩阵可以构建出其他多个模型评价指标。
Class | Positive Prediction | Negative Prediction |
---|---|---|
Positive Class | True Positive(TP) | False Negative(FN) |
Negative Class | False Positive(FP) | True Negative(TN) |
2.AUC(Area Under Curve)
AUC(Area Under Curve), ROC曲线下面积,反映了模型整体的预测性能。越接近1,代表模型预测性能更好。
3.敏感度
敏感度(Sensitivity,Sen)敏感度与少数样本类别有关,它表示了阳性类样本的分类正确率。
Sen=TPTP+FN Sen = \frac {TP} {TP+FN} Sen=TP+FNTP
4.特异度
特异度(Specificity,Spe)与多数样本类别有关,表示了阴性类样本的分类正确率。
Spe=TNFP+TN Spe = \frac {TN}{FP+TN} Spe=FP+TNTN
5.PPV
阳性预测值(positive predict,PPV)指预测出的全部阳性样本中,真阳性所占的比例。表示判定为阳性类样本中,有多大概率预测是正确的。
PPV=TPTP+FP PPV = \frac {TP}{TP+FP} PPV=TP+FPTP
6.NPV
阴性预测值(negative predict,NPV)指预测出的全部阴性样本中,真阴性所占的比例。它表示判定为阴性类样本中,有多大概率预测是正确的。
NPV=TNTN+FN NPV = \frac {TN}{TN+FN}