使用Python进行多个机器学习模型、多个评价指标表格绘制(AUC、敏感度、特异度、F1值、约登指数、MCC、Kappa等)

本文介绍了如何使用Python计算和绘制多个机器学习模型的评价指标,包括AUC、敏感度、特异度、F1值、约登指数、MCC和Kappa等。详细讲解了这些指标的含义,并提供了代码实现多个模型的评价表格绘制。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一.常见模型评价指标简要说明

1.混淆矩阵

混淆矩阵是真实值和预测值的交叉表通过混淆矩阵可以构建出其他多个模型评价指标。

Class Positive Prediction Negative Prediction
Positive Class True Positive(TP) False Negative(FN)
Negative Class False Positive(FP) True Negative(TN)

2.AUC(Area Under Curve)

AUC(Area Under Curve), ROC曲线下面积,反映了模型整体的预测性能。越接近1,代表模型预测性能更好。

3.敏感度

敏感度(Sensitivity,Sen)敏感度与少数样本类别有关,它表示了阳性类样本的分类正确率。
Sen=TPTP+FN Sen = \frac {TP} {TP+FN} Sen=TP+FNTP

4.特异度

特异度(Specificity,Spe)与多数样本类别有关,表示了阴性类样本的分类正确率。
Spe=TNFP+TN Spe = \frac {TN}{FP+TN} Spe=FP+TNTN

5.PPV

阳性预测值(positive predict,PPV)指预测出的全部阳性样本中,真阳性所占的比例。表示判定为阳性类样本中,有多大概率预测是正确的。

PPV=TPTP+FP PPV = \frac {TP}{TP+FP} PPV=TP+FPTP

6.NPV

阴性预测值(negative predict,NPV)指预测出的全部阴性样本中,真阴性所占的比例。它表示判定为阴性类样本中,有多大概率预测是正确的。

NPV=TNTN+FN NPV = \frac {TN}{TN+FN}

您可以使用Python中的`AdaBoostClassifier`类来进行数据集的预测,并计算异度、准确度、敏感度,并绘制ROC曲线。下面是一种可能的实现方式: ```python import numpy as np import matplotlib.pyplot as plt from sklearn.ensemble import AdaBoostClassifier from sklearn.metrics import accuracy_score, roc_curve, auc, confusion_matrix # 假设您已经准备好了训练集和测试集的征和标签数据 X_train, y_train = ... X_test, y_test = ... # 创建AdaBoost分类器对象 clf = AdaBoostClassifier() # 使用训练集拟合分类器 clf.fit(X_train, y_train) # 对测试集进行预测 y_pred = clf.predict(X_test) # 计算准确度 accuracy = accuracy_score(y_test, y_pred) # 计算混淆矩阵 tn, fp, fn, tp = confusion_matrix(y_test, y_pred).ravel() # 计算异度 specificity = tn / (tn + fp) # 计算敏感度(召回率) sensitivity = tp / (tp + fn) # 绘制ROC曲线 y_pred_proba = clf.predict_proba(X_test)[:, 1] # 获取正类的预测概率 fpr, tpr, thresholds = roc_curve(y_test, y_pred_proba) roc_auc = auc(fpr, tpr) plt.figure() plt.plot(fpr, tpr, label='ROC curve (area = %0.2f)' % roc_auc) plt.plot([0, 1], [0, 1], 'k--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver Operating Characteristic') plt.legend(loc="lower right") plt.show() ``` 请注意,您需要将训练集和测试集的征数据存储在`X_train`和`X_test`中,标签数据存储在`y_train`和`y_test`中。此外,上述代码中的`...`表示您需要根据实际情况进行相应的数据准备和处理。 希望能对您有所帮助!如果有任何问题,请随时提问。
评论 20
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值