为什么看halcon自带的示例代码是最好的halcon学习方式

本文探讨了机器视觉领域的halcon软件学习途径,介绍了halcon作为专业机器视觉SDK的重要性,对比了培训课程与自学的不同,强调了halcon示例代码在学习过程中的核心作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

由于智能制造和人工智能的火热,直接让机器视觉这个行业也火热起来。在机器视觉这个行业,对于我们技术人员来说,halcon、opencv、Ni-vision、VisionPro、CeresSolver等等就成为了我们敲开机器视觉工程师大门的敲门砖。

在这些机器视觉专用SDK中,最容易让新手入门,也最专业实用的是halcon。

想要学习halcon,我们有多种选择,比如:你可以报一个培训班,一般学习时间一个半月到三个月,你需要到培训公司的指定地点去学习,培训费用一般在一万元左右。能学到的halcon内容基本包括二维平面相关的内容。你也可以关注网上的线上课程,目前在网易云上有火星人的halcon课程,价格600元,不过该课程内容还不到halcon整个内容的四分之一,如标定、缺陷检测、三维、等等重要内容,都不包含。

其实,还有另外一个方式,就是自己通过halcon给出的帮助手册以及示例程序学习。如下图所示:

我们可以看到,其实halcon的学习资料是很完善的,所有的示例程序按照在工业上的应用范围和领域进行了分类,同时,还按照各个示例实现的方法进行了分类。再加上halcon对各个算子的解析也有详细的解释,这个在我们自学的时候也有很大的帮助。

首先,需要清楚的一点是:上面提及的所有的学习方式,对halcon自带示例的学习都是重要的组成部分。通过边运行halcon的示例代码,看执行效果,边分析halcon的示例代码,从而学习halcon的各种算子的使用,以及在具体的项目中,我们需要怎样去使用halcon的算子。

再就是:所有写过代码的人都知道,学习编程的过程,就是不断学习别人的代码,然后为我所用的过程。有些是我们能直接使用别人的代码片段为我所有;有些是,我们能学习别人的思路,为我们所用。不管是哪种方式,首要的条件是:我们得先看过很多别人的代码,然后我们才能知道,在哪能找到我们需要的代码。

既然只是谁带领你学习这些就在你眼前的这些代码,那么,为什么不可以自己学习呢?自己学习,会碰到的难处是:要学的很多,该从哪开始学习;哪些才是常用的重点;学习过程中的孤独等等的问题。可是,一旦你踏上了技术这条路,那么不断学习就会伴随着整个职业生涯,一招鲜在技术这个行当是绝对不行的。所以我们需要有自学的能力,从而支撑我们在整个技术生涯中不断向上。

那么,何不从学习halcon开始呢。资料齐全,只待去学。为了各位选择自学的朋友能在自学之路上走得更加顺畅一些,下面的公众号里边,会持续的分享笔者曾经自学过程中的学习笔记,希望能和各位交流学习。

 

代码分析共享公众号:

 

### Halcon 测量功能示例代码与教程 Halcon 提供了丰富的测量工具和函数,能够满足多种工业应用场景下的需求。以下是关于 Halcon 自带测量功能的相关内容以及示例代码。 #### 1. 使用 Measure Object 进行 IC 引脚测量 Halcon 的 `Measure` 对象是一种强大的工具,用于执行高精度的边缘检测和几何特征提取。以下是一个基于 `Measure` 对象的经典应用——IC 引脚测量[^1]: ```hdevelop * 创建测量对象 GenMeasureRectangle2 (Row, Column, Phi, Length1, Length2, Sigma, Metric, \ InpaintingMode, MeasureHandle) * 加载图像并预处理 ReadImage (Image, 'ic_image') EdgesSubPix (Image, Edges, 'canny', 1, 10, 20) * 执行测量操作 MeasurePos (Image, MeasureHandle, MinContrast, RowEdgeFirst, ColumnEdgeFirst, \ AmplitudeFirst, RowEdgeSecond, ColumnEdgeSecond, AmplitudeSecond) * 显示结果 dev_display(Image) disp_cross(5, RowEdgeFirst, ColumnEdgeFirst, 5, 'red') disp_cross(5, RowEdgeSecond, ColumnEdgeSecond, 5, 'blue') * 清理资源 CloseMeasure (MeasureHandle) ``` 此代码片段展示了如何创建一个矩形区域内的测量对象,并利用该对象完成对目标物体(如 IC 引脚)的精确位置计算。 --- #### 2. 像素坐标到实际坐标的转换 当涉及到物理尺寸测量时,通常需要将像素坐标映射为实际的世界坐标。这一步骤依赖于相机标定的结果[^3]。假设已经完成了相机标定,则可以通过以下方式获取实际距离: ```hdevelop * 将像素坐标转换为世界坐标 PixelToRealWorldCoordinates (CamParam, Pose, X_pix, Y_pix, Z_world, X_world, Y_world) * 计算两点之间的实际距离 Distance = sqrt((X_world_1 - X_world_2)^2 + (Y_world_1 - Y_world_2)^2) ``` 以上代码实现了从像素空间到真实世界的变换过程,从而支持毫米级或其他单位的实际长度测量。 --- #### 3. C# 调用 Halcon 实现测量功能 除了 HDevelop 中直接编写 HALCON 脚本外,在实际工程项目中也常采用 C# 结合 Halcon SDK 来开发应用程序[^2]。下面展示了一种简单的调用模式: ```csharp using System; using HalconDotNet; class Program { static void Main(string[] args) { // 初始化 Halcon 图像变量 HObject ho_Image = new HObject(); HTuple hv_Width = null, hv_Height = null; try { // 读取测试图片 ReadImage(out ho_Image, "test_image"); // 获取图像大小 GetImageSize(ho_Image, out hv_Width, out hv_Height); Console.WriteLine($"Image Size: {hv_Width} x {hv_Height}"); // 添加更多测量逻辑... } catch (Exception e) { Console.WriteLine(e.Message); } } } ``` 这段程序演示了如何加载一张图像并通过其属性验证基本设置是否正常工作。后续可以根据业务需求扩展具体的测量模块。 --- #### 4. 完整测量项目的实现流程 对于更复杂的场景,例如零件定位加尺寸测量组合型任务,可以参考官方文档中的案例分析[^4]。一般而言,这类项目会经历以下几个阶段: - **图像采集**:通过 USB 或 GigE 接口连接至外部设备; - **预处理增强对比度**:运用滤波器去除噪声干扰; - **模板匹配寻找 ROI**:借助 Shape-Based Matching 方法精确定位感兴趣区; - **边界轮廓抽取**:结合亚像素级别技术提高准确性; - **最终数值输出**:依据前述原理得出结论并与标准阈值比较判断合格与否。 --- ###
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值