综述论文“Advances and Open Problems in Federated Learning”

联邦学习(FL)是分布式机器学习的一种形式,允许设备在不共享数据的情况下协同训练模型,保护用户隐私。本文概述了FL的最新发展,强调了其在数据隐私和系统效率方面的优势,同时也指出了存在的问题和挑战,包括公平性、客户端选择偏差以及通信效率等。拆分学习作为FL的一个变体,通过在客户端和服务器之间按层划分模型,进一步增强了数据保护。未来的研究将关注如何在FL中实现更公平的模型训练和处理各种系统约束的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2019年12月10日arXiv上载的联邦学习综述论文“Advances and Open Problems in Federated Learning“。
在这里插入图片描述
摘要:联邦学习(FL)是一种机器学习设置,其中许多客户端(例如移动设备或整个组织)在中央服务器(例如服务提供商)的协调下协同训练模型,同时保持训练数据的分散性。 FL体现了集中数据收集和最小化的原理,并且可以减轻由于传统的集中式机器学习和数据科学方法导致的许多系统隐私风险和成本。 受FL研究爆炸性增长的推动,本文讨论了FL最新进展,并提出了大量未解决的问题和挑战。

联邦学习一词由谷歌研究部门McMahan等人于2016年引入:“我们将我们的方法称为联邦学习,因为学习任务是通过由中央服务器协调的参与设备(我们称为客户端)的松散联合来解决的。”

数据中心的联邦学习分布学习典型特性比较:
Typical characteristics of federated learning settings vs. distributed learning in the datacenter
Typical characteristics of federated learning settings vs. distributed learning in the datacenter
联邦学习系统中经过训练的模型和各种参与者的生命周期图:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值