结构篇| 分而治之思想-MOE架构

01 背景

混合专家模型 (MoE) 的理念起源于 1991 年的论文Adaptive Mixture of Local Experts。这个概念与集成学习方法相似,旨在为由多个单独网络组成的系统建立一个监管机制。随着 Mixtral 8x7B 的推出, 首次提出一种称为混合专家模型 (Mixed Expert Models,简称 MoE) 的 Transformer 模型架构在LLM领域落地。

在传统机器学习时期,MoE可以参考Ensemble思想进行理解。Ensemble技术统合多个模型的预测结果,并给出一个最终答案,比如如果是一个分类任务,Ensemble模型内可能包含20个独立的分类模型,每个模型都会根据输入返回一个分类预测结果,Ensemble模型最后使用比如Majority Vote得出最后的预测结果。与Ensemble一样,MoE会训练多个小模型并进行整合,但二者出发点不同:Ensemble统合所有小模型的意见,通过平均或Majority Vote给出综合的答案,目的是使模型更加General和Robust;MoE将每个任务分配给特定的小模型,每个小模型都是解决某些特定问题的Expert,而MoE将会通过weight function计算一个权重来将任务给到具体的模型来解决问题,将一个大的问题空间拆分成小的子空间交由不同Expert解决。

MoE模型是一种基于分而治之策略的神经网络架构,它将复杂的问题分解为多个子问题ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序猿阿三

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值