在深度学习中,矩阵运算无处不在,矩阵微积分则是理解和优化这些运算的核心。我将从矩阵微积分的基本概念入手,推导关键公式,结合深度学习实战代码,揭示其在模型训练优化中的重要作用。
微积分-第9篇:矩阵微积分——深度学习的矩阵级优化
在深度学习的世界里,数据以矩阵的形式流转,模型的训练本质上是对大规模矩阵的运算与优化。矩阵微积分作为连接微积分与线性代数的桥梁,为理解深度学习中梯度计算、参数更新等核心过程提供了数学基础。从神经网络的前向传播到反向传播,矩阵微积分的规则贯穿始终,助力模型在高维参数空间中寻找最优解。本文将深入解析矩阵微积分的概念、推导与实战应用,揭示其在深度学习优化中的关键作用。
一、核心概念:矩阵微积分的基本定义与分类
1.1 标量对向量求导
当标量函数 y = f ( x )