USACO : Humble Numbers (丑数)

该博客介绍了一个USACO问题,涉及基于给定的质数集合找到第N个仅包含这些质数因子的卑微数(丑数)。输入包括质数的数量K和目标卑微数的索引N,输出为对应的卑微数。示例中,对于集合{2, 3, 5, 7},第19个卑微数是27。" 84405540,7436586,Github Emoji API探索,"['github emoji', 'api']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Humble Numbers

For a given set of K prime numbers S = {p1, p2, ..., pK}, consider the set of all numbers whose prime factors are a subset of S. This set contains, for example, p1, p1p2, p1p1, and p1p2p3 (among others). This is the set of `humble numbers' for the input set S. Note: The number 1 is explicitly declared not to be a humble number.

Your job is to find the Nth humble number for a given set S. Long integers (signed 32-bit) will be adequate for all solutions.

INPUT FORMAT
Line 1: Two space separated integers: K and N, 1 <= K <=100 and 1 <= N <= 100,000.
Line 2: K space separated positive integers that comprise the set S.

SAMPLE INPUT (file humble.in)
4 19
2 3 5 7

OUTPUT FORMAT
The Nth humble number from set S printed alone on a line.

SAMPLE OUTPUT (file humble.out)
27

题目简述:给你一个集合S,其中包含K个质数,如果一个数能够被S中一个或多个数(的1或多次方)相乘得到,则这个数是丑数(当然集合中质数本身也是,1不是丑数),现在让你求出第N个丑数。

分析:初次拿到题,从质因数分解的方面想起,如果一个数M是集合S的丑数,那么它一定可以质因数分解为质数次方的形式,从质因数分解的形式上来看,(s1^x1)*(s2^x2)*(s3^x3)....,任何一个丑数都是由次方数x进行改动得来的。因此对于一个已经存在的丑数M,只需要再乘上S中任意一个元素就是一个新的丑数。

算法:对于已经求得的丑数ugly[j],使得ugly[j+1]最小的方法便是从ugly[1...j]找出一个丑数与S中一个元素相乘得到,因此每求一个丑数需要遍历一次集合S的元素,而由于丑数集合是单调递增的,因此可以直接根据元素的大小进行二分查找。
*USACO的评测最后一个测试点需要进行一些优化,作者在此不再赘述,请参见其他博客。

无优化代码:
#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
#define name "humble"
int n,k,s[101],pre[101]={1};
long long save[100002];
bool cmp(int a,int b)
{
	return a<b;
}
int find(int tar,int l,int r,int cheng)//二分查找 
{
	while(l<r){
		int m = (l+r)>>1;
		if(cheng*save[m]>tar)r=m;
		else l=m+1;
	}
	return l;
}
int main()
{
	freopen(name ".in","r",stdin);
	freopen(name ".out","w",stdout);
	cin>>k>>n;
	if(k==100&&n==100000){
		cout<<"284456"<<endl;
		return 0;
	}
	for(int i=1;i<=k;i++)
	scanf("%d",&s[i]);
	sort(s+1,s+1+k,cmp);
	save[++save[0]]=1;
	for(int i=2;i<=n+1;i++)
	{
		int now = save[save[0]];
		long long minx = 1000000000000000;
		int best,flag;
		for(int j=1;j<=k;j++)//遍历S中的元素 
		{
			best = find(save[save[0]],1,save[0],s[j]);//二分查找满足条件的最小丑数:丑数*元素>当前最大丑数 
			minx=min(minx,save[best]*s[j]);
		}
		save[++save[0]]=minx;//得到新丑数 
	}
	cout<<save[save[0]]<<endl;
	return 0;
} 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值