pagerank算法总结

本文总结了PageRank算法,包括原始算法中遇到的问题,如死节点(Dead End)导致的PR值流失和Spider Traps造成PR值集中,以及升级版算法如何通过参数调整解决这些问题,确保PR值在所有节点间合理分布。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原始的pagerank算法

对每个节点给定一个初始pr值

迭代直到节点值不变:
    对所有节点,按照概率将节点的pr值分配给其他节点(对于其他节点是一个收集值的累加过程)

这里会出现几种case:

case1:出现了dead end

dead end就是死节点,没有出边,分配给该节点的pr值,由于没有出边,所以直接归零。在多次迭代后,慢慢的所有的pr值都会被消耗殆尽,归于沉寂。

死节点例子
多次迭代后结果(假设初始pr值都为1/4):

case2:出现了Spider Traps

只有入边没有出边,pr值只进不出,多次迭代后,会出现这个节点收集到了所有的pr值,为1,其他节点全为0。例如


升级版的pagerank算法

在这里插入图片描述
算是给原先的打了一个补丁,但是引入了一个参数。
升级后的算法,
对于case1,虽然pr值仍然会流失,pr值的总和不至于为0,为小于1的某个数。
对于case2,由于引入了一些参数,所以即是到了只进不出的顶点还是有机会出去的,出去的几率在于这个权衡参数的大小。

参考:
1、《mining of massive datasets》相应章节

demo代码:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值