在生成式 AI 领域,Multi-AI Agent 这一话题正变得日益火热。众多科技巨头纷纷推出了相关框架,令人目不暇接。
但是,面对众多的 Multi-AI Agent 框架,如何做出选择确实是个难题。
市场上的选项繁多,让人难以决断!
特别是在 OpenAI 推出了 Swarm,微软也推出了 Magentic-One 之后,这一领域更是显得拥挤。为了帮助大家理清思路,我将详细剖析这些框架的核心特性、优势以及潜在的不足,以便大家能根据自己的需求做出最佳选择。接下来,我们将逐一探讨这些框架:
1、 Autogen
AutoGen 框架是该领域的先驱,由微软推出,并在软件开发领域得到了广泛应用。
主要特点如下:
- AutoGen 包含用户智能体和助手智能体两个核心角色。
- 用户智能体负责提出编程需求或编写提示词,助手智能体则负责生成和执行代码。
- 助手智能体不仅负责代码生成,还包括代码执行过程,并将结果反馈给用户智能体或其他智能体。
- 该框架擅长于代码任务的多智能体编排(multi-agent orchestration),同时也具备处理其他类型任务的能力。
- 在智能体间的交互过程中,允许人工提供指导。
- 来自微软的强大、坚实的社区支持。
然而,AutoGen 也存在以下局限性:
- 对非编程背景的用户来说,操作不够直观。
- 在本地部署大语言模型(LLMs)时,配置过程较为繁琐,需要额外配置代理服务器。
- 在非软件开发领域,其表现可能不如专业工具出色。
2、 CrewAI
CrewAI 通常是大家快速搭建 Multi-AI Agent 任务演示的首选工具,因为它的操作直观,配置起来也十分简便。
功能特点:
- 操作界面直观,主要依靠编写提示词。
- 创建新智能体并将其融入系统非常简单,几分钟内就能生成上百个智能体。
- 即便是非技术背景的用户也能轻松上手。
- 得益于与 LangChain 的集成,它能够与多数 LLM 服务提供商和本地 LLM 配合使用。
不足之处:
- 在灵活性和定制化方面有所限制。
- 更适合处理基础场景,对于复杂的编程任务则不太理想。
- 智能体间的交互偶尔会出现一些故障。
- 技术社区的支持力度相对较弱。
3、 Langraph
我个人非常推崇 LangGraph,这个工具可以适用于各种 Multi-AI Agent 任务,并且具有极高的灵活性。
功能特点:
- LangGraph 基于 LangChain 开发,其核心思想是“有向循环图(Directed Cyclic Graph)”。
- 它不仅仅是一个 Multi-AI agent 框架,功能远超于此。
- 高度灵活,可定制性强,几乎能够满足所有多智能体协作应用的需求。
- 作为 LangChain 的延伸,它得到了技术社区的大力支持。
- 能够与开源的 LLMs(大语言模型)以及各种 API 无缝协作。
不足之处:
- 文档资料不够详尽。对于编程经验较少的用户来说,上手难度较大。
- 使用它需要具备一定的编程能力,特别是在图(graphs)和逻辑流程的理解上。
4、 OpenAI Swarm
OpenAI 最近发布了 Swarm,我得说,对于想要入门 Multi-AI agent 框架的新手来说,这可能是目前最易用的选择。
功能特点:
- 非常适合 Multi-AI Agent 领域的新手。
- 主要致力于简化“智能体创建”过程,以及智能体之间的上下文切换操作(我们称之为Handoffs)。
- 制作一个简短的演示应用极其简单。
不足之处:
- 只支持 OpenAI API,不支持其他 LLMs。
- 不适合在生产环境部署。
- 系统的灵活性有待提高。
- 技术社区支持较弱,甚至无法在 GitHub 上提交问题反馈。
5、 Magentic-One
最新亮相的是微软推出的 Magnetic-One(这是微软的第二个框架),其目标是对现有的 AutoGen 框架进行简化。
功能特点:
- 与 Swarm 相似,Magnetic-One 同样适用于编程经验较少的用户,操作起来简便快捷。
- 系统预设了五个智能体,包括一个管理智能体和另外四个专用智能体:WebSurfer 负责在浏览器中浏览网页以及与网页进行互动,FileSurfer 负责本地文件的管理与导航,Coder 专注于代码的编写与分析,而 ComputerTerminal 则提供控制台访问权限,运行程序和安装库文件。
- 该框架基于 AutoGen 打造,是一个通用框架。
- 附带了 AutoGenBench 工具,专门用于评估智能体的性能。
不足之处:
- 对开源 LLMs 的支持较为复杂,不易实现。
- 灵活性有待提高;从某种程度上看,它更像是一款应用,而非一个框架。
- 目前的文档资料和技术社区支持力度几乎为零,尚需加强。
6、 那么,哪一款 Multi-AI Agent 框架最为出色?
以下是我的个人见解(我亲身体验过这些智能体框架):
- 在软件开发方面:AutoGen(由微软推出) —— 它最适合处理代码生成和复杂的 multi-agent 编码工作流任务。
- 对于初学者来说:OpenAI Swarm 和 CrewAI —— 这两个框架操作简便,非常适合刚接触 multi-agent AI 且没有复杂配置需求的新手使用。
- 处理复杂任务的首选:LangGraph —— 该框架提供了极高的灵活性,是为高级用户设计的,支持自定义逻辑和智能体编排(orchestration)。
- 在与开源 LLMs 的兼容程度方面:LangGraph —— 它与开源 LLMs 的兼容性极佳,支持多种 API 接口,这是其他一些框架所不具备的。CrewAI 在这方面也表现不俗。
- 技术社区支持最给力:AutoGen 拥有相当不错的技术社区支持,能够帮助用户解决一些难题。
- 即开即用的选择:CrewAI —— 它的配置快捷、操作直观,非常适合用于演示或是需要迅速创建智能体的任务。Swarm 和 Magentic-One 的表现也相当不错,但社区支持相对较弱。
- 性价比之王:Magentic-One —— 它提供了一套预配置的解决方案,采用了通用框架的设计方法,可能在初期能够节省成本。Swarm 和 CrewAI 在成本效益方面也值得关注。
那么,如何系统的去学习大模型LLM?
作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。
所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
👉大模型学习指南+路线汇总👈
我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
👉①.基础篇👈
基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
👉②.进阶篇👈
接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
👉③.实战篇👈
实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
👉④.福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!