在人工智能飞速发展的当下,大型语言模型(LLMs)已成为众多创新应用的基石。然而,要将这些模型的潜力充分发挥,转化为实用且强大的应用,开发者们需要借助一系列先进的技术和框架。其中,RAG(检索增强生成)、LangChain 和 Agent 技术脱颖而出,它们各自扮演着独特且关键的角色,共同推动着 AI 应用的边界拓展。本文将深入探讨这三者的核心概念、工作原理、应用场景以及它们之间的协同关系,助您构建坚实的技术认知基础。
1、RAG(检索增强生成): 知识增强外挂
RAG (Retrieval-Augmented Generation)的中文名是检索增强生成,是一种创新性的技术框架,旨在提升大型语言模型(LLM)输出的准确性与实用性。其核心思想是在生成响应之前,从外部知识库中检索相关信息,并将这些信息融入到模型的生成过程中,从而使模型能够利用最新或特定领域的知识,而无需重新训练。这种方式有效弥补了 LLM 训练数据的局限性,确保模型在各种场景下都能生成更具相关性和准确性的回答。
举个生动的例子:假设你读完九年义务教育,这相当于完成了模型的预训练阶段,拥有了基础认知能力;考上大学主修金融专业,经过四年系统学习后,这就完成了模型的微调过程,此时你就能处理基础的金融分析任务了。
但大学四年实在太久,于是你想了个捷径——带着高中课本的同时,随身携带《证券分析》《公司理财》等专业书籍,这样虽然比不上科班出身,但靠着"开卷考试"的特权也能应付基础金融问题。
当你接到客户咨询时,先调动中学知识框架,再从专业书籍里扒拉出相关段落,整理成通俗易懂的答复,这套操作流程就是RAG的生动写照。
鉴于模型训练如同学历教育般耗时烧钱,加上超长记忆技术尚在实验室阶段,当前RAG这种"外挂知识库"的模式,在金融咨询、法律服务和政府智库等需要实时更新专业知识的领域,展现出了极强的落地潜力。
应用场景
-
智能问答系统:在企业客服、智能助手等场景中,RAG 能够结合企业内部知识库,为用户提供准确、及时的回答,提升客户满意度。
-
企业知识管理:帮助企业员工快速检索和理解公司内部的文档、报告等知识资产,提高工作效率。
-
法律和医疗文档分析:在处理专业领域的文档时,RAG 可以确保模型利用最新的法规、医学研究成果等信息,提供可靠的分析和建议。
2、LangChain: 方便快捷地创建AI应用
LangChain 是一个开源的开发框架,专为简化基于大型语言模型(LLM)的应用程序开发而设计。它提供了一套丰富的工具、组件和接口,使开发者能够轻松管理与语言模型的交互,将多个组件链接在一起,并集成额外的资源,如 API 和数据库,从而构建出功能强大、灵活可扩展的 AI 应用。
作为专为LLM应用开发设计的开源框架,LangChain极大地简化了基于大语言模型的应用程序构建流程。
在RAG这一LLM核心应用场景中,LangChain不仅提供了全面支持,更通过灵活的多步骤工作流设计能力,显著提升了RAG系统的可控性和可靠性。
核心组件
-
模型(Model):封装了对 LLM 的调用,支持多种主流模型,如 OpenAI、Anthropic、Hugging Face 等,为不同模型提供统一的调用接口。
-
提示模板(Prompt Templates):用于构建和管理发送给 LLM 的输入提示,支持动态变量插值,使开发者能够根据不同的任务和需求,灵活定制输入提示。
-
链(Chains):将多个组件组合成一个处理流程,实现复杂任务的自动化。例如,将文档加载、文本分割、向量存储和检索等操作组合成一个链,用于文档问答系统。
-
代理(Agents):具备决策能力的组件,能够根据任务动态选择链或工具执行。代理可以理解任务需求,分析当前状态,并决定采取何种行动来完成任务。
-
记忆(Memory):用于存储和管理对话历史,实现上下文感知的交互。在聊天机器人等应用中,记忆组件能够让模型记住之前的对话内容,从而生成更连贯、相关的回复。
-
工具(Tools):集成外部 API 或功能模块,如搜索引擎、计算器、数据库查询等,扩展 LLM 的能力。通过调用这些工具,模型可以获取更多的信息,执行更复杂的任务。
核心架构
-
组件层(Components):提供与 LLM 交互的基本构建块,如模型、提示模板等,这些组件是构建更复杂应用的基础。
-
链层(Chains):将多个组件按特定逻辑组合,形成处理流程。链层可以实现一些常见的任务,如文本摘要、问答系统等,开发者可以根据需要选择和组合不同的链,或者自定义链来满足特定的业务需求。
-
代理层(Agents):在链的基础上增加决策逻辑,根据任务动态选择执行路径。代理可以根据任务的性质和当前的状态,决定调用哪个链或工具来完成任务,从而实现更智能、灵活的应用。
-
集成层(Integrations):支持与外部数据源、工具和服务的集成,增强应用功能。通过集成层,LangChain 可以与各种外部资源进行交互,如数据库、API、文件系统等,为模型提供更多的数据和功能支持。
应用场景
-
个人助理:结合用户的日历、邮件、文件等数据,为用户提供个性化的帮助和建议,如日程安排、信息检索等。
-
文档问答:从大量的文档中提取信息,回答用户的问题,适用于企业知识管理、法律文档查询等场景。
-
聊天机器人:构建具有上下文感知能力的聊天机器人,能够理解用户的意图,提供准确、自然的回复,提升用户体验。
-
查询表格数据:对表格数据进行分析和查询,如在金融报表、销售数据等场景中,帮助用户快速获取所需信息。
-
与 API 交互:通过调用外部 API,实现更多的功能扩展,如获取实时天气信息、股票行情等。
3、Agent(智能体): AI执行任务的“代理人”
Agent(智能体)是一种具备自主决策能力的软件实体,能够感知环境、规划行动,并通过调用各种工具来完成特定的任务。在 AI 领域,Agent 通常基于大型语言模型构建,它可以理解用户的指令,分析任务需求,然后根据自身的知识和经验,制定执行计划,并调用相应的工具(如搜索引擎、数据库、API 等)来执行任务,最终将结果返回给用户。
就像它的英文原意所示,Agent扮演着智能代理人的角色,能够"理解"用户制定的业务流程和规则,并基于自身逻辑来协调处理复杂的任务序列。
让我们回到开头的那张图里,这三个名词各自的职责和执行流程如下:
LangChain可以为任务提供足够复杂的工作流结构,而Agent则负责根据PromptTemplate的设定执行这些流程中的每一个任务环节。
LangChain框架也提供了各种相应的库对RAG技术进行支持,让RAG技术可以作为Agent从Knowledge Base获取知识的工具。
Agent获得相应的知识后,再由LLM组织并理解,作出返回给客户有用的信息或是执行特定操作的判断,并由Agent来完成。
这个经典组合可以应用到很多类似的应用当中,随着人工智能领域技术的全面发展,该组合的能力也在不断提升。
应用场景
-
复杂任务执行:在需要多个步骤和多种工具协同完成的任务中,如数据分析、项目管理等,Agent 能够根据任务需求,自动规划执行路径,调用相应的工具,高效地完成任务。
-
多轮对话系统:在聊天机器人、智能客服等多轮对话场景中,Agent 可以根据用户的历史对话记录和当前输入,理解用户的意图,提供更准确、更个性化的回答,提升用户体验。
-
智能助手:作为用户的智能助手,Agent 可以集成多种功能,如日程管理、信息检索、文件处理等,帮助用户更便捷地完成日常工作和生活中的各种任务
4、小结
RAG、LangChain 和 Agent 作为当前 AI 应用开发领域的关键技术,各自具有独特的优势和应用场景。RAG 通过检索外部知识库,有效提升了语言模型输出的准确性和实用性;LangChain 提供了强大的开发框架和丰富的工具,极大地简化了基于语言模型的应用开发过程;Agent 则具备自主决策和工具调用能力,能够高效地完成复杂任务。
三者之间相互关联、协同工作。LangChain 为 RAG 和 Agent 的构建提供了基础框架和工具支持;Agent 可以利用 RAG 增强自身的知识和决策能力;而 RAG 与 Agent 在 LangChain 的框架下,可以实现更复杂、更智能的应用场景。
随着人工智能技术的不断发展,我们可以预见,RAG、LangChain 和 Agent 将在未来发挥更加重要的作用。它们将不断演进和完善,实现更紧密的集成和更强大的功能扩展。例如,RAG 可能会进一步优化检索算法和知识库管理,提高检索效率和信息准确性;LangChain 可能会推出更多的组件和工具,支持更多的应用场景和开发需求;Agent 可能会具备更强大的推理和决策能力,能够处理更加复杂和多样化的任务。
对于开发者而言,深入理解和掌握这三项技术,将为构建先进的 AI 应用提供有力的支持。无论是在智能问答系统、企业知识管理、智能助手等领域,还是在未来可能出现的新兴应用场景中,RAG、LangChain 和 Agent 都将成为开发者的得力工具,助力他们创造出更具创新性和价值的 AI 解决方案。
那么,如何系统的去学习大模型LLM?
作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。
所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
👉大模型学习指南+路线汇总👈
我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
👉①.基础篇👈
基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
👉②.进阶篇👈
接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
👉③.实战篇👈
实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
👉④.福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!