yolo组件之Bottleneck层总结

1. Bottleneck介绍

        Bottleneck 层是在深度残差网络(ResNet)中引入的一种重要组件,用于降低模型的计算复杂度并提升特征提取能力。 

1.1 背景和动机

        深度残差网络(ResNet)是一种解决深层神经网络训练困难的方法。由于在深层网络中,梯度消失和梯度爆炸等问题可能会导致难以训练的模型。ResNet 提出了跳跃连接(shortcut connection)和残差学习的概念,允许信息在网络中的不同层之间直接传递,从而帮助解决了训练问题。

1.2 Bottleneck 层结构

        Bottleneck 层是 ResNet 中的基本组件之一,它由三个主要部分组成:

        1x1 卷积层:用于降低输入的通道数(维度),以减少计算复杂度。这一步主要是为了在保持特征质量的同时减少维度。

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值