paddle学习日记-序

在项目中使用paddleOCR进行图片识别,发现对于手写签名识别效果不佳。尝试了官网的ch_ppocr_server_v2.0系列高级模型,包括检测、分类和识别模型,但识别率仍较低,主要对正楷字体识别较好。考虑是否需要进一步训练自定义模型以提升手写签名的识别准确率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

因项目中要对图片进行识别,了解到paddleOCR,把它用于项目中。基本满足了对图片检测和识别的需求。直到有一次,要对手写签名进行识别,OMG,识别率相当的低,内置模型不管用了,默认内置是轻量级模型。

首先我想到的是去paddleOCR官网看看有没有高级点的模型(ch_ppocr_server),网址: GitHub - PaddlePaddle/PaddleOCR: Awesome multilingual OCR toolkits based on PaddlePaddle (practical ultra lightweight OCR system, support 80+ languages recognition, provide data annotation and synthesis tools, support training and deployment among server, mobile, embedded and IoT devices)icon-default.png?t=L892https://github.com/PaddlePaddle/PaddleOCR

分别下载了检测、分类和识别模型

解压后

然后修改代码:

ocr = PaddleOCR(det_model_dir='./inference/ch_ppocr_server_v2.0_det_infer/', rec_model_dir='./inference/ch_ppocr_server_v2.0_rec_infer/', cls_model_dir='./inference/ch_ppocr_mobile_v2.0_cls_infer/'lang="ch", use_angle_cls=True)

测试:

总结: 签名字体要写的相对比较正楷,才可能被识别。否则,识别出什么鬼。

是不是要开始训练模型了?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值