deep learning with R

本文通过具体实例介绍了如何使用R语言中的neuralnet包构建并训练神经网络模型。首先创建了一个简单的数据集并用其训练了一个包含两个隐藏层的神经网络,然后展示了如何利用训练好的模型进行预测并与实际值进行对比。此外还提供了加载并使用Boston数据集进行预处理的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


require(RSNNS)
library(neuralnet)
set.seed(2016)
attribute<-as.data.frame(sample(seq(-2,2,length=50),50,replace=F),ncol=1)
response<-attribute^2
data<-cbind(attribute,response)
colnames(data)<-c("attribute","response")
head(data,10)
    attribute   response
1  -1.2653061 1.60099958
2  -1.4285714 2.04081633
3   1.2653061 1.60099958
4  -1.5102041 2.28071637
5  -0.2857143 0.08163265
6  -1.5918367 2.53394419
7   0.2040816 0.04164931
8   1.1020408 1.21449396
9  -2.0000000 4.00000000
10 -1.8367347 3.37359434
fit<-neuralnet(response~attribute,data=data,hidden=c(3,3),threshold = 0.01)
testdata<-as.matrix(sample(seq(-2,2,length=10),10,replace=F),ncol=1)
pred<-compute(fit,testdata)
result<-cbind(testdata,pred$net.result,testdata^2)
colnames(result)<-c("Attribute","Prediction","Actual")
round(result,4)
      Attribute Prediction Actual
 [1,]   -1.5556     2.4213 2.4198
 [2,]   -0.2222     0.0364 0.0494
 [3,]   -1.1111     1.2254 1.2346
 [4,]    1.1111     1.2013 1.2346
 [5,]    0.6667     0.4395 0.4444
 [6,]    1.5556     2.4521 2.4198
 [7,]   -0.6667     0.4554 0.4444
 [8,]    0.2222     0.0785 0.0494
 [9,]    2.0000     3.9317 4.0000
[10,]   -2.0000     3.9675 4.0000
require(Metrics)
data("Boston",package="MASS")
data<-Boston
keeps<-c("crim","indus","nox","rm","age","dis","tax","ptratio","lstat","medv")
data<-data[keeps]
apply(data,2,function(x) sum(is.na(x)))
  crim   indus     nox      rm     age     dis     tax ptratio   lstat 
      0       0       0       0       0       0       0       0       0 
   medv 
      0 



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值