题目:
求一个二叉树中任意两个节点间的最大距离,两个节点的距离的定义是这两个节点间边的个数,比如某个孩子节点和父节点间的距离是1,和相邻兄弟节点间的距离是2,
优化时间空间杂度。
思路一:
计算一个二叉树的最大距离有两个情况:
情况A: 路径经过左子树的最深节点,通过根节点,再到右子树的最深节点。
情况B: 路径不穿过根节点,而是左子树或右子树的最大距离路径,取其大者。
首先算出经过根节点的最大路径的距离,其实就是左右子树的深度和;然后分别算出左子树和右子树的最大距离,三者比较,最大值就是当前二叉树的最大距离了。
代码如下:
/*-----------------------------
Copyright by yuucyf. 2011.09.02
------------------------------*/
#include "stdafx.h"
#include <iostream>
#include <assert.h>
using namespace std;
typedef struct tagSBTreeNode
{
tagSBTreeNode *psLeft;
tagSBTreeNode *psRight;
int nValue;
int nMaxLeft;
int nMaxRight;
tagSBTreeNode()
{
psLeft = psRight = NULL;
nValue = 0;
nMaxLeft = nMaxRight = 0;
}
}S_TreeNode;
void AddTreeNode(S_TreeNode *&psTreeNode, int nValue)
{
if (NULL == psTreeNode)
{
psTreeNode = new S_TreeNode;
assert(NULL != psTreeNode);
psTreeNode->nValue = nValue;
}
else if (psTreeNode->nValue < nValue)
{
AddTreeNode(psTreeNode->psRight, nValue);
}
else
AddTreeNode(psTreeNode->psLeft, nValue);
}
int MaxDepth(const S_TreeNode *psTreeNode)
{
int nDepth = 0;
if (NULL != psTreeNode)
{
int nLeftDepth = MaxDepth(psTreeNode->psLeft);
int nRightDepth = MaxDepth(psTreeNode->psRight);
nDepth = (nLeftDepth > nRightDepth) ? nLeftDepth : nRightDepth;
nDepth++;
}
return nDepth;
}
int MaxDistance(const S_TreeNode *psRootNode)
{
int nDistance = 0;
if (NULL != psRootNode)
{
nDistance = MaxDepth(psRootNode->psLeft) + MaxDepth(psRootNode->psRight);
int nLeftDistance = MaxDistance(psRootNode->psLeft);
int nRightDistance= MaxDistance(psRootNode->psRight);
nDistance = (nLeftDistance > nDistance) ? nLeftDistance : nDistance;
nDistance = (nRightDistance > nDistance) ? nRightDistance : nDistance;
}
return nDistance;
}
int _tmain(int argc, _TCHAR* argv[])
{
S_TreeNode *psRoot = NULL;
AddTreeNode(psRoot, 9);
AddTreeNode(psRoot, 6);
AddTreeNode(psRoot, 4);
AddTreeNode(psRoot, 8);
AddTreeNode(psRoot, 7);
AddTreeNode(psRoot, 15);
AddTreeNode(psRoot, 13);
AddTreeNode(psRoot, 16);
AddTreeNode(psRoot, 18);
cout << "任意两个节点间的最大距离为:" << MaxDistance(psRoot) << endl;
return 0;
}
思路二:
思路一不是效率最高的,因为在计算二叉树的深度的时候存在重复计算。但应该是可读性比较好的,同时也没有改变原有二叉树的结构和使用额外的全局变量。这里之间给出代码,因为代码的注释已经写的非常详细了。
代码如下:
int g_nMaxLeft = 0;
void MaxDistance_2(S_TreeNode *psRoot)
{
// 遍历到叶子节点,返回
if (NULL == psRoot)
return;
// 如果左子树为空,那么该节点的左边最长距离为0
if (psRoot->psLeft == NULL)
{
psRoot->nMaxLeft = 0;
}
// 如果右子树为空,那么该节点的右边最长距离为0
if (psRoot->psRight == NULL)
{
psRoot -> nMaxRight = 0;
}
// 如果左子树不为空,递归寻找左子树最长距离
if (psRoot->psLeft != NULL)
{
MaxDistance_2(psRoot->psLeft);
}
// 如果右子树不为空,递归寻找右子树最长距离
if (psRoot->psRight != NULL)
{
MaxDistance_2(psRoot->psRight);
}
// 计算左子树最长节点距离
if (psRoot->psLeft != NULL)
{
int nTempMax = 0;
if (psRoot->psLeft->nMaxLeft > psRoot->psLeft->nMaxRight)
{
nTempMax = psRoot->psLeft->nMaxLeft;
}
else
{
nTempMax = psRoot->psLeft->nMaxRight;
}
psRoot->nMaxLeft = nTempMax + 1;
}
// 计算右子树最长节点距离
if (psRoot->psRight != NULL)
{
int nTempMax = 0;
if(psRoot->psRight->nMaxLeft > psRoot->psRight->nMaxRight)
{
nTempMax = psRoot->psRight->nMaxLeft;
}
else
{
nTempMax = psRoot->psRight->nMaxRight;
}
psRoot->nMaxRight = nTempMax + 1;
}
// 更新最长距离
if (psRoot->nMaxLeft + psRoot->nMaxRight > g_nMaxLeft)
{
g_nMaxLeft = psRoot->nMaxLeft + psRoot->nMaxRight;
}
}